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Abstract

This thesis investigates a modification to Differential Phase Shift Keyed (DPSK)

modulation to create a Low Probability of Interception/Exploitation (LPI/LPE) com-

munications signal. A pseudorandom timing offset is applied to each symbol in the

communications stream to intentionally create intersymbol interference (ISI) that

hinders accurate symbol estimation and bit sequence recovery by a non-cooperative

receiver. Two cooperative receiver strategies are proposed to mitigate the ISI due to

symbol timing offset: a modified minimum Mean Square Error (MMSE) equalization

algorithm and a multiplexed bank of equalizer filters determined by an adaptive Least

Mean Square (LMS) algorithm. Both cooperative receivers require some knowledge

of the pseudorandom symbol timing dither to successfully demodulate the communi-

cations waveform.

Numerical Matlabr simulation is used to demonstrate the bit error rate per-

formance of cooperative receivers and notional non-cooperative receivers for binary,

4-ary, and 8-ary DPSK waveforms transmitted through a line-of-sight, additive white

Gaussian noise channel. Simulation results suggest that proper selection of pulse

shape and probability distribution of symbol timing offsets produces a waveform that

is accurately demodulated by the proposed cooperative receivers and significantly

degrades non-cooperative receiver symbol estimation accuracy. In typical simula-

tions, non-cooperative receivers required 2-8 dB more signal power than cooperative

receivers to achieve a bit error rate of 1.0%. For nearly all reasonable parameter

selections, non-cooperative receivers produced bit error rates in excess of 0.1%, even

when signal power is unconstrained.
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Signal Processing Design of

Low Probability of Intercept Waveforms

Via Intersymbol Dither

I. Introduction

Secure communications have proven to be vital to successful military operations

across all levels of warfare [9]. With the advent of wireless technology, dis-

tributed communication has become a military staple [17]. The advantage of wireless

communications is not without risks. In particular, the broadcast nature of wireless

transmissions makes this form of communication highly susceptible to eavesdropping

by third parties utilizing non-cooperative receiver devices. This vulnerability has led

to an ever-evolving challenge to develop and field wireless communications systems

that hinder or preclude detection, interception, and exploitation by non-cooperative

receivers [12].

A multitude of strategies have been employed to prevent the exploitation of

communication signals. Perhaps the most common approach is data encryption which

involves coding of the information bits prior to transmission. Successful encryption

prevents a third party from extracting information from the intercepted and demod-

ulated communications waveform [21:463].

Another way to approach wireless communications security is to prevent the

adversary from intercepting the waveform in a meaningful way. Spread spectrum and

frequency hopping techniques, for example, enhance wireless communications security

by making the signal difficult to detect and intercept [21:95]. This thesis investigates a

strategy that manipulates the transmitted waveform to inject self-inflicted interference

between communications symbols such that a non-cooperative receiver cannot resolve
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the transmitted communications symbols. Two cooperative receivers are proposed

that mitigate this self-interference using signal processing techniques.

1.1 Problem Statement

Because many types of wireless communications are broadcast over a large area,

the signals are highly vulnerable to third-party interception and monitoring. Protec-

tion strategies at both the bit and waveform level are desirable to prevent eavesdrop-

ping. This can be achieved by applying techniques to obstruct non-cooperative parties

from detecting, intercepting, and/or exploiting the communications signal. The goal

of a Low Probability of Detection (LPD) signal is to prevent other parties from being

aware that the signal is present. For the purposes of this thesis, Low Probability of

Interception (LPI) refers to difficulty in identifying and extracting the symbols from

the waveform. Finally, Low Probability of Exploitation (LPE) describes methods that

prevent recovery of the signal’s information at the bit level.

1.2 Research Focus

This thesis develops a modification to Differential Phase Shift Keyed (DPSK)

modulation to achieve a waveform with LPI characteristics. This is achieved by

inserting controlled intersymbol interference (ISI) in the transmitted waveform that

inhibits accurate symbol estimation in non-cooperative receivers. Additional signal

processing in the cooperative receiver must be designed to mitigate the injected ISI.

Symbol estimation accuracy of the cooperative receiver for the LPI signalling scheme

should be similar to the optimal DPSK signalling performance. The additional costs

of computational complexity in the cooperative receiver and potential bandwidth

expansion of the waveform are considered.

1.3 Implications

The LPI signalling strategy proposed in this thesis potentially provides an ad-

ditional layer of information security for wireless communications that can be used in

1-2



concert with existing LPD/LPI/LPE protection schemes. The concept presented in

this research is applicable to common modulation techniques such as Pulse Amplitude

Modulation, Quadrature Amplitude Modulation, and Phase Shift Keyed Modulation.

1.4 Preview

Chapter II contains background information, outlining existing physical layer

strategies for LPI communications, develops a model framework for multipath channel

effects and equalization, and surveys blind equalization techniques. Proposed signal

processing techniques for generating low-probability of intercept waveforms are de-

veloped in Chapter III. Chapter IV develops a numerical simulation of these signal

processing techniques, simulation results are presented in Chapter V, and conclusions

are summarized in Chapter VI.
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II. Background and Literature Review

This chapter begins by reviewing several common existing strategies for creating

secure wireless communications signals. LPE signalling via encryption, LPD

through spread spectrum, and LPI via frequency hopping are presented. The remain-

der of the chapter discusses ISI in the context of wireless communications. The LPI

signalling scheme developed in this thesis uses ISI to degrade non-cooperative receiver

performance. Significant research exists concerning the mitigation of ISI caused by

multipath channels. These techniques are applicable to the signal processing design

of a cooperative receiver for the LPI scheme developed in Chapter III. Blind equaliza-

tion methods, which mitigate ISI due to multipath with minimal a-priori knowledge

of the signal, are also reviewed for potential application to non-cooperative receivers

attempting to demodulate the proposed LPI technique.

2.1 Existing Secure Communications Strategies

Encryption is perhaps the most widely implemented form of digital communica-

tions protection in both the wireless and wired environments. Encryption techniques

are widely studied, and a survey of encryption is beyond the scope of this document.

It is sufficient to state that the goal of encryption is to prevent a third party from

extracting information from an intercepted bit stream. In other words, encryption

protects the information in the event that the transmitted bits are intercepted. A

cooperative receiver relies on a-priori knowledge of the decryption key to extract

the message from the received bit stream. The security of encryption relies on the

inability of a third party to determine the key, even if the encryption technique is

known [21:463]

Spread spectrum, on the other hand, makes it difficult for a third party to

recognize that a communications signal is being transmitted. The modulated signal

is spread over a large bandwidth by mixing with a high rate pseudorandom sequence.

By dispersing the signal power over a large bandwidth, a non-cooperative receiver is

less likely to discern the presence of a transmitted signal from the channel noise [21:95].
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The pseudorandom code used to create a spread spectrum waveform must be known

by the receiver to recover (despread) the waveform to achieve to original modulated

communications signal. In many cases, a non-cooperative receiver will not have access

to this code, making demodulation difficult even if the signal of interest is known to

be present [15].

Frequency hopping involves adjusting the carrier frequency of the modulated

signal according to a pseudorandom sequence. A cooperative receiver uses knowledge

of the pseudorandom sequence of carrier frequencies to locate and demodulate the

signal. Presumably, a non-cooperative receiver lacks access to the hopping sequence

and must detect each successive carrier frequency and match the frequency in order

to demodulate the signal. To prevent signal interception, the hop rate must be suf-

ficiently fast enough to prevent the non-cooperative receiver from adjusting to and

extracting information at any carrier frequency [21:199].

2.2 Intersymbol Interference and Equalization

Direct sequence digital communications signals transmit information as a series

of consecutive symbols representing binary data. In a basic signalling scheme, symbols

are transmitted in succession, with the end of the current symbol coinciding exactly

with the beginning of the next symbol. The bandlimited nature of physical channels,

however, limits the speed at which the communications waveform can be changed.

This temporal spreading of the signal blurs the boundaries between communications

symbols, creating ISI [4, 16]. In wireless communications, ISI is exacerbated by the

multiple paths a transmitted signal may take to reach a receiver, with each path

inducing different amplitude and phase (time delay) distortions on the signal. At any

single instant, the composite signal measured at the receiver is the result of multiple

symbols that have travelled over multiple routes [16:771].

The composite effect of these distortions can be modeled as a linear time-

invariant system characterized by the overall channel impulse response h(t) which
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Figure 2.1: Baseband communications model

maps the transmitted signal x(t) to the received signal y(t) according to (2.1) [6:70].

y (t) =

∫ ∞

−∞

x (λ) h (t − λ) dλ (2.1)

This chapter considers the baseband communications model shown in Figure 2.1.

The transmitted symbol sequence is represented by a series of discrete, complex sym-

bols denoted x(n). The digital to analog converter (DAC) block converts the discrete

series to a continuous time (ct) impulse train with symbol impulses occurring ev-

ery Tsym seconds. The transmitted signal is subject to the effective channel impulse

response h
(ct)
eff (t), which may introduce ISI, and additive noise b(ct)(t). The effective

channel impulse response represents pulse shaping in the transmitter f (ct)(t), the phys-

ical channel impulse response h
(ct)
phys(t), and a matched filter in the receiver f (ct)∗(−t).

The superscript (ct) denotes continuous time signals in this thesis. The received sig-

nal after matched filtering is y(ct)(t) and is sampled an integer number of times O per

symbol period Tsym.

The goal of equalization is to mitigate or even remove the ISI via signal process-

ing within the communications receiver. Filtering, a common approach to equaliza-

tion, attempts to modify the received signal in a manner that isolates the individual

symbols, essentially inverting the effect of the channel [16:150]. The digital transverse
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filter is a linear time-invariant system defined by its discrete impulse response w′

which acts on the received signal samples y′(k) to produce an estimate of the trans-

mitted signal (x̂(n) ≈ x(n − δ)) as shown in Figure 2.1. The “prime” designation

denotes oversampled signals with Tsym/O seconds between samples. The transverse

filtering operation is described mathematically by the discrete convolution sum:

x′(k) = w′(k) ∗ y′(k) =
M−1∑

m=0

w′(m)y′(k − m) . (2.2)

The above model assumes the channel response is static. In many physical

systems, however, the channel impulse response varies over time [16:946]. For static

channels, preset equalization in which the filter taps are constant is sufficient. For

slowly time-varying channels, an adaptive equalizer is required. An adaptive equalizer

may update the filter taps continuously or periodically. In either case, an adaptive

filter is characterized by a convergence rate. When the channel variation rate exceeds

the convergence rate of the filter, symbol recovery is degraded [16:158]. The LPI

signal design in Chapter III attempts to vary the effective channel impulse response

beyond the filter convergence rate to prevent eavesdropping.

Of particular interest to non-cooperative receiver design are blind, adaptive

equalization methods. These methods are designed to undo the effects of the linear,

time-invariant channel using only limited knowledge of the channel and the statistics

of the source signal [4:684]. A successful blind equalizer allows a non-cooperative

receiver to minimize ISI and extract communications signals with little or no prior

knowledge of the information content.

2.3 Single/Multichannel Communications Model Equivalence

When the sampling period is an integer multiple of the symbol period in the

single channel model (Figure 2.1), the system can be equivalently represented as a

multiple channel system with discrete signals and impulse responses at a sampling

frequency of 1/Tsym as shown in Figure 2.2. This section derives the equivalent multi-
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Figure 2.2: Multichannel communications model

channel model and presents a block matrix notation for the system. The equivalence

derivation is based on [5].

2.3.1 Model Equivalence. In this thesis, the effective channel impulse re-

sponse is a combination of the transmitter pulse shape, the physical channel model,

and the receiver matched filter. The continuous time effective channel impulse re-

sponse h
(ct)
eff (t) can be expressed as

h
(ct)
eff (t) = f (ct)(t) ⋆ h

(ct)
phys(t) ∗ f (ct)∗(−t) , (2.3)

where

f (ct)(t) = Pulse shape (and matched filter) ,

h
(ct)
phys(t) = Physical channel impulse response.

All pulse shapes considered in this thesis are real and symmetric, so the pulse shape

and matched filter are identical (f (ct)(t) = f (ct)∗(−t)). Note that continuous time

signals are explicitly denoted by the superscript (ct).
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In the baseband communications model, the N transmitted symbols are repre-

sented by a series of complex, discrete terms x(n). The continuous time signal after

matched filtering in the receiver can be written as

yct(t) =
N−1∑

n=0

x(n)h
(ct)
eff (t − nTsym − to) + b(ct)(t) . (2.4)

The additive noise signal b(ct)(t) is the channel noise passed through the matched

filter. Unless otherwise stated, the channel noise is assumed to be additive white

Gaussian noise ν(ct)(t). It follows that the resulting noise signal is described by

b(ct)(t) =

∫ ∞

−∞

f (ct)(τ)υ(ct)(t − τ)dτ . (2.5)

The oversampling factor O defines the number of samples per symbol period

Tsym, resulting in a sampling rate of O/Tsym samples per second. In this way, the

sampled matched filter output can be written as

y(ct)

(
kTsym

O

)

=
N−1∑

n=0

x(n)h
(ct)
eff

(
kTsym

O
− nTsym − to

)

+ b(ct)

(
kTsym

O

)

. (2.6)

The synchronization of the sampling is determined by t0. The sampled signals

in (2.6) have obvious discrete analogs defined in (2.7). The “prime” designation is used

to indicate an oversampled discrete series with Tsym/O seconds between samples.

y′(k) = y(ct)

(
kTsym

O

)

h′(k) = h
(ct)
eff

(
kTsym

O
− to

)

b′(k) = b(ct)

(
kTsym

O

)

(2.7)
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After sampling the matched filter output in the baseband model, the equaliza-

tion filter with M taps spaced Tsym/O seconds apart is applied. The resulting signal

x̂′(k) is given by

x̂′(k) =
M−1∑

m=0

w′(m)y(ct)

(

(k − m)
Tsym

O

)

. (2.8)

The approximated symbols are extracted by downsampling by decimating by O:

x̂(n) = x̂′ (O(n + 1) − 1) ,

=
M−1∑

m=0

w′(m)y(ct)

(

(O(n + 1) − 1 − m)
Tsym

O

)

,

=
M−1∑

m=0

w′(m)y(ct)

(

nTsym +
(O − 1)Tsym

O
− mTsym

O

)

. (2.9)

The multichannel model can be extracted from (2.9) by restructuring as O

summations of decimated series w′(m) and y′(k):

x̂(n) =

(M/O)−1
∑

m=0

w′(Om)y(ct)

(

(n − m) Tsym +
(O − 1)Tsym

O

)

+

(M/O)−1
∑

m=0

w′(Om + 1)y(ct)

(

(n − m) Tsym +
(O − 2)Tsym

O

)

...

+

(M/O)−1
∑

m=0

w′(Om + O − 1)y(ct) ((n − m) Tsym) ,

=

(M/O)−1
∑

m=0

w′(Om)y ((n − m)O + O − 1)

+

(M/O)−1
∑

m=0

w′(Om + 1)y ((n − m)O + O − 2)

...

+

(M/O)−1
∑

m=0

w′(Om + O − 1)y ((n − m)O) . (2.10)
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Defining sample spaced subchannel variables in terms of the oversampled single

channel variables (2.12) allows the estimated symbols to be written as O discrete

convolutions:

x̂(n) =
(
w(1)(n) ⋆ y(O)(n)

)
+

(
w(2)(n) ⋆ y(O−1)(n)

)
+ . . .+

(
w(O)(n) ⋆ y(1)(n)

)
. (2.11)

b(i)(n) = b′ (nO + i − 1)

y(i)(n) = y′ (nO + i − 1)

h(i)(n) = h (nO + i − 1) (2.12)

Finally, the subchannel siganls y(i)(n) are derived in terms of the subchannel

impulse responses:

y(i)(m) =
N−1∑

n=0

x(n)h
(ct)
eff

(
(Om + i − 1)Tsym

O
− nTsym − to

)

+ b(i)(m) ,

=
N−1∑

n=0

x(n)h
(ct)
eff

(

(m − n)Tsym +
(i − 1)Tsym

O
− to

)

+ b(i)(m) ,

= x(m) ∗ h(i)(m) + b(i)(m) . (2.13)

So h(i), b(i)(n), y(i)(n), and w(i) are now defined in terms of their single channel

analogs. With these definitions, (2.11) and (2.13) map the system input x(n) to the

output x̂(n) and the multichannel model is described completely.

2.3.2 Convolution Matrix. The discrete linear convolution operation can be

expressed in matrix form. In general, recasting the convolution as a matrix opera-

tion allows for faster convolution computations. In the context of communications
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channel modeling and equalization filtering, properties of the convolution matrix cor-

responding to the effective channel impulse response provide insight into equalization

performance (see Section 2.4.3). The following block notation is derived from [5]

and [11].

To begin, define the subchannel impulse response h(i)(n) and equalization filters

w(i)(n) sequences as vectors. Each impulse response vector has length L and each

equalization filter has length M/O.

h(i) = [h(i)(0), h(i)(1), ... h(i)(L − 1)]T (2.14)

w(i) = [w(i)(0), w(i)(1), ... w(i)(M/O − 1)]T (2.15)

The subchannel equalization filters can be stacked columnwise to make a single vector

w(n) according to (2.16), which should not be confused with the oversampled filter

tap vector w′ in Figure 2.1.

w(n) =








w(O)(n)
...

w(1)(n)








(2.16)

The subchannel matched filter output y(i)(n) can be expressed as a vector by

recasting all of the discrete sequences in terms of vectors or convolution matrices. To

proceed, let y(i)(n) be a vector of N matched filter samples such that

y(i)(n) = [y(i)(n), y(i)(n − 1), y(i)(n − 2), ... y(i)(n − N + 1)]T . (2.17)

Similarly, x(n) and b(i)(n) are defined according to

x(n) = [x(n), x(n − 1), x(n − 2), ... x(n − N − L + 2)]T , (2.18)

b(i)(n) = [b(i)(n), b(i)(n − 1), b(i)(n − 2), ... b(i)(n − N + 1)]T . (2.19)
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The subchannel convolution matrix H
(i)
N for the ith subchannel acts on (N +

L− 1) transmitted symbols in x(i)(n) to give N samples in y(i)(n) (2.20). The length

of the effective channel impulse response as an integer number of symbol periods is L.

H
(i)
N is a block diagonal matrix with h(i) on the diagonal (2.21).

y(i)(n) = H
(i)
N x(n) + b(i)(n) (2.20)

H
(i)
N =

N+L
︷ ︸︸ ︷









h(i)(0) · · · h(i)(L − 1) 0 · · · · · · 0

0 h(i)(0) · · · h(i)(L − 1) 0 · · · 0
...

...

0 · · · · · · 0 h(i)(0) · · · h(i)(L − 1)

















N

(2.21)

Stacking all of the subchannels columnwise, the entire multichannel matched

filter output y(n) can be expressed in terms of the block convolution matrix containing

the effective channel impulse response of each subchannel:

y(n) =








y(1)(n)
...

y(O)(n)








,

=








H
(1)
N

...

H
(O)
N








x(n) +








b(1)(n)
...

b(O)(n)








,

= HNx(n) + b(n) . (2.22)

Calculating the estimated symbol vector x̂(n) of length N requires a matched

filter output vector y(n) of length O(N + M/O − 1). Each subchannel equalization

filter w(i) can be cast as a convolution matrix W
(i)
N with dimensionality (M/O +
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N) × N . Concatenating these convolution matrices row-wise (2.23) produces the

estimated symbol vector solution in (2.24).

WN =
[

W
(O)
N · · ·W(1)

N

]

(2.23)

x̂(n) = WNy(n) (2.24)

2.4 Equalization Techniques

To better understand the major equalization algorithm families, a classification

structure is desired. The equalization algorithms discussed in this section are shown

in Figure 2.3, organized according to the hierarchy presented in Haykin’s Adaptive Fil-

ter Theory [4]. This survey contrasts several key algorithm characteristics relevant to

non-cooperative receiver operation as discussed in Section 2.4.1. After defining these

algorithm traits, the algorithms of interest are summarized. Because the behavior of

blind equalization algorithms is often described relative to least mean square (LMS)

adaptive filtering based on a known training signal, an overview of LMS is presented

first [4:231]. The constant modulus and Sato algorithms, which share a similar struc-

ture with the LMS algorithm, are presented next. A block subspace decomposition

algorithm based on eigenvalue decomposition of the received signal’s autocorrelation

matrix is described in detail. Finally, spectrum fitting and Shalvi and Weinstein’s

higher-order cumulants approaches are reviewed. Special attention is given to the

statistical assumptions made by each algorithm and the performance under non-ideal

conditions for possible LPI signalling techniques.

2.4.1 Equalization Algorithm Key Characteristics. Haykin groups blind

algorithms into two broad categories: algorithms based on the estimation of a signal’s

second order statistics (SOS) vice algorithms requiring higher-order statistics (HOS)

to be estimated. Because second order statistics can be estimated accurately with

far fewer observations than higher-order statistics, SOS based algorithms typically
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Figure 2.3: Hierarchy of equalization algorithms
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converge significantly faster than those leveraging HOS [4]. Convergence speed can

be quite important in a wireless environment with a dynamic channel response. The

ability of the receiver to extract meaningful information often hinges on whether

the equalizer can track the changing impulse response of the channel and invert the

multipath/fading effect [24].

Equalizer sampling rate is another characteristic useful for classification. Gen-

erally, an algorithm either uses a single sample from each communications symbol,

or multiple samples (note that this assumes the symbol rate is known by the re-

ceiver). Algorithms utilizing multiple samples per transmitted symbol are considered

fractionally spaced equalizers (FSE), and generally perform better than equivalent

sample spaced or baud spaced equalization (BSE) methods [16:161]. Fractional sam-

pling techniques often converge faster and with greater accuracy than their sample

spaced analogs [4:727].

The ability of a blind equalization algorithm to adapt in real time is useful

to consider, particularly when considering applications in wireless systems which are

often subject to time-varying channel behavior. Algorithms that update the equal-

ization filter on a symbol-by-symbol basis are considered to be continuously adaptive.

Algorithms which process a block of observed symbols transmitted under a single

channel condition to identify an equalization filter are labeled periodically adaptive

for the purposes of this thesis.

An equalization method is considered direct if the output of the algorithm is

the tap weights of the linear equalization filter w. For example, the equalization

filter is estimated many times in some iterative algorithms. The indirect equaliza-

tion approach first estimates the channel impulse response h before solving for the

equalization filter taps.

2.4.2 Least Mean Square (LMS) Algorithm. The LMS algorithm applied to

equalization is an adaptive method of updating the tap weights of a transverse filter

based on the difference between the filter output and the known source signal originally
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Figure 2.4: Block diagram of the least mean square algorithm

transmitted. The process is a stochastic extension of deterministic steepest descent

algorithms that use the gradient of an error term to determine how the tap weights

should be updated to decrease the error term. Instead of explicitly computing the

gradient, the LMS algorithm estimates the gradient based on the known transmitted

signal, received signal, and current filter tap weights. Figure 2.4 depicts a receiver

implementation of the LMS algorithm [4:231]. The equalization filter is updated after

processing each received symbol, giving a new set of tap coefficients for w at each

symbol index n.

Both the method of steepest descent and LMS algorithms use a cost function

defined by the expectation of the square of the error term e(n). The resulting cost

function can be written in terms of the statistics of the transmitted and received
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signals [18:287]. Using the multichannel model notation, the cost function is

J(n) = E [e∗(n)e(n)] ,

= E
[(

x(n − δ) − wT (n)y(n)
)∗ (

x(n − δ) − wT (n)y(n)
)]

,

= E [x∗(n − δ)x(n − δ)] − 2Re







E
[
x(n − δ)yH(n)

]

︸ ︷︷ ︸

pT
xy

w∗(n)







+ wT (n) E
[
y(n)yH(n)

]

︸ ︷︷ ︸

Ry

w∗(n) ,

= E [x∗(n − δ)x(n − δ)] − 2Re
{
pT

xyw
∗(n)

}
+ wT (n)Ryw

∗(n) . (2.25)

Taking the gradient of the cost function with respect to the filter w gives

∇wJ(n) = −2pT
xy + 2wT (n)Ry . (2.26)

Note that the expectations have been rewritten as the correlation matrix Ry of the

received signal vector y(n) and the cross correlation vector pxy of the received signal

y(n) with the current symbol from the known training signal [18:287]. Convergence

of the steepest descent method depends on the autocorrelation matrix and cross-

correlation vector remaining constant at all time steps n, thus the transmitted symbol

sequence x(n) is assumed to be wide-sense stationary (WSS) and the received signal

after sampling is either WSS if y′(k) is sample spaced or cyclostationary if y′(k) is

fractionally spaced. In practice, LMS can be effective for time-varying channels if the

convergence speed is fast relative to the changing channel response, even though this

violates the stationary assumption for y(n) [4:203-205].

In LMS, the gradient of the cost function is no longer a deterministic function of

filter coefficients. Instead, the gradient at each time step is estimated stochastically

using a different estimate of the autocorrelation and cross-correlation matrices at each
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time step according to

∇̂wJ(n) = −2p̂T (n) + 2w(n)T R̂y(n) , (2.27)

where

R̂y(n) = y(n)yH(n) ,

p̂xy(n) = y∗(n)x(n − δ) .

Note that the length of the received vector must match the length of the filter. The

filter length, in turn, needs to be large enough to approximate the inverse channel

response. Using three times the length of the finite channel impulse response model

to determine the filter length is typical [4:236].

The estimated gradient of the cost function produces the filter update function

given by

w(n + 1) = w(n) − µ
(

∇̂J(n)
)T

,

= w(n) + µy∗(n)
(
x(n) − yT (n)w(n)

)
,

= w(n) + µy∗(n)e(n) . (2.28)

As implied by the function, the adaptive controller in the LMS algorithm updates

the filter after each received symbol [4:236]. The parameter µ is the step size that

controls how much the filter weights are updated in the direction indicated by ∇̂J(n).

The step size must be small enough to prevent the filter coefficients from jumping

too far past the error minima with each iteration and diverging. For values of µ that

converge, however, smaller step sizes result in slower convergence. Although the step

size is somewhat arbitrary, the general convergence criteria calls for µ to be small

relative to the inverse of the largest eigenvalue of Ry [4:288].

2-16



Because the symbol-by-symbol update of the filter coefficients is based on an

estimate of the gradient that varies with every iteration, the filter never converges to

the exact equalization solution that inverts the channel effects completely. Instead, the

estimate will continue to fluctuate around the optimal solution after convergence. The

average residual mean square error, or misadjustment, after convergence is directly

proportional to the step size. Thus, step size selection must balance convergence

speed and steady state error. This has driven investigation of LMS algorithms with

variable step sizes [7].

2.4.3 Constant Modulus Algorithm (CMA). The constant modulus algo-

rithm (CMA) is one of the most common blind equalization techniques [5]. The

algorithm is functionally similar to the LMS algorithm, sharing the same adaptive

update method and modest processing requirements for implementation. Both sym-

bol spaced and fractionally spaced versions have been studied extensively. CMA is

a part of a larger class of Bussgang blind adaptive algorithms that directly equalize

the channel based on higher-order statistics [4]. The fractionally spaced version has

the advantage of converging to the same equalization solution as the trained LMS

algorithm (perfect equalization) under noiseless conditions for most channels [5]. The

criteria for convergence to the LMS solution are presented below. Sample spaced

CMA, on the other hand, has been shown to require impractical constraints such as

infinite filter length in order to achieve perfect equalization [2].

Intuitively, CMA works by minimizing an error term based on the difference

between the expected symbol amplitude and the sampled magnitude of the symbol:

e(n) =
E

[
|x(n)|4

]

E
[
|x(n)|2

] − |x̂(n)|2 . (2.29)

The error term can be minimized using the same update strategy as the LMS error

minimization technique described in Section 2.4.2. Error minimization operates on

the square of the error term, which itself contains the symbol estimate squared |x(n)|2,
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so convergence relies implicitly on the estimation of fourth order statistics via time

averaging. This HOS dependence dictates the low convergence speed of the CMA

algorithm relative to SOS based methods [4:730].

Clearly, if the source signal is of constant modulus, the error term approaches

zero as the filter approaches convergence. Although not obvious, CMA converges

even when the source signal does not have a constant modulus. In this case, however,

the minima of the cost surface no longer correspond to zero cost. The non-zero

steady state cost of the minima have the effect of “flattening” the shape of the cost

surface, resulting in slower convergence. This “flattening” phenomena becomes more

pronounced as the kurtosis of the source signal increases [5:1935].

As with the LMS algorithm, the step size µ must strike a balance between

convergence speed and steady state mean square error, making variable step size

strategies desirable [23]. For example, one such method performs a second cost mini-

mization with respect to the step size at each iteration, searching the cost surface in

the direction of steepest descent as calculated by the gradient estimation. This mini-

mization determines the “optimal” step size for the current iteration. This approach

has the additional advantage of reducing the likelihood of converging to local minima

for multimodal cost surfaces [26].

Like LMS, CMA assumes a wide-sense stationary or cyclostationary received

signal (depending on the sampling rate of the receiver). Under time-varying channel

conditions, the received signal statistics will fluctuate, violating the WSS assumption.

However, given sufficiently slow channel variation, the signal statistics may still be

stable enough for the time-averaging implicit in CMA to equalize the channel and

track the variation in cost surface minima [4:688].

In the case of fractionally spaced CMA, the following four conditions guarantee

that the cost surface minima correspond to filter coefficients that perfectly equalize the

channel response. First, the channel must be noiseless. Second, the (possibly complex)

source signal must be composed of a series of independent, identical symbols from a
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circularly symmetric constellation. Third, the kurtosis of the symbol distribution

must be less than the kurtosis of a Gaussian distribution [4:727]. Lastly, the channel

convolution matrix as defined by Tong et al. must be full column rank [20]. The

combined channel-filter impulse response for an FSE is presented in terms of the

effective channel convolution matrix in Section 2.3.2. Notably, the second and third

requirements for perfect equalization are properties of the source signal, suggesting

that these features may be exploitable in the design of LPI communications systems,

although these assumptions are not exploited in this thesis.

The full column rank requirement of the channel convolution matrix leads to

a minimum number of filter taps required for perfect equalization. For a matrix to

be full column rank, it must have at least as many rows as columns. The number of

required taps is a function of the length of the channel response and the number of

samples during each symbol period according to (2.30), where M is the total number

of filter tapes, either arranged in a single, fractionally spaced vector in the single

receiver model, or as O symbol spaced vectors of length M/O in the multichannel

model. L is the number of symbol periods over which the channel impulse response

is non-zero, and O is the number of samples taken during each symbol period in the

single channel model, or the number of antennas in the multichannel model [5:1930].

M ≥ L +
M

O
− 1

∴ M ≥ O(L − 1)

O − 1
≈ L (2.30)

Another extension of the full column rank condition is the requirement that

the impulse response of each channel (in the multichannel system model) be linearly

independent of other channel impulse responses. In other words, the z-transform of

the channel responses must share no common zeros [4:693].
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Many variations of CMA have been developed, typically with the goal of ad-

dressing specific CMA shortcomings. Vector CMA [25] is of particular interest in

relation to the LPI strategy proposed in Chapter III. Vector CMA suggests a means

of equalizing source signals with high kurtosis such as QAM constellations produced

by shell mapping. Vector CMA defines an error term based on a vector of successive

symbols in an attempt to create a statistic with sub-Gaussian kurtosis. In the case

of shell mapping, the encoding structure is such that a properly chosen symbol block

length produces uniformly distributed error statistics that can be minimized via the

cost surface gradient descent [22, 25]. This process is similar to the bank of LMS

equalizers discussed as a cooperative receiver structure for the LPI signal design.

2.4.4 Sato Algorithm. Like the constant modulus algorithm, Sato’s algo-

rithm is an adaptive algorithm based on LMS. As in LMS and CMA, the Sato algo-

rithm directly equalizes the received signal by iteratively adjusting the equalization

filter coefficients. As originally proposed in [13], the Sato algorithm is developed in

the context of multilevel pulse amplitude modulation (PAM). The algorithm simplifies

equalization by dividing the PAM detection space into two equally likely regions, and

then modelling the signal as binary with the remaining levels considered as additive

noise. In a zero-mean PAM signal, this is equivalent to considering only the sign of

the signal [13]. The resulting error term for a received symbol is given by

e(n) = x̂(n) − [sgn x̂(n)] · E [|x(n)|] . (2.31)

The Sato algorithm is subject to the same channel impulse response constraints

as CMA. Local minima in the cost surface are also a difficulty, particularly in noisy

environments. With no particular advantages over CMA and an infinite equalizer

length requirement for perfect equalization [4:722], the Sato algorithm is not pursued

as a non-cooperative receiver architecture in this thesis.
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2.4.5 Block Subspace Decomposition Algorithm. Subspace decomposition is

a channel identification algorithm (indirect equalization) for oversampled signals with

cyclostationary statistics. The primary advantage of the subspace decomposition

method over CMA is that it relies on second-order statistics, which can be estimated

well with relatively few samples compared to higher-order statistics. The algorithm is

not continually adaptive in the sense that the channel is not estimate is not iteratively

refined on a symbol by symbol basis. Instead, a block of consecutive samples must be

collected. Conceivably, a sufficiently slow time-varying channel could be repeatedly

estimated using a sliding block of samples, making it a candidate for a periodically

adaptive implementation. The significant complexity of subspace decomposition is a

limiting factor. Also, as a fractionally spaced algorithm, subspace decomposition is

subject to the same full column rank requirement on the channel convolution matrix

as CMA as discussed in Section 2.4.3 [4:689-701].

The subspace decomposition method considers the correlation matrices of the

transmitted signal and the received signal. Interestingly, the theoretical development

of the subspace method includes an additive noise source which is restricted to be ban-

dlimited, stationary, and independent from the transmitted signal without disturbing

the ability of the algorithm to approach perfect equalization [11,20]. Specifically, the

correlation matrix of the received signal in terms of the correlations of the transmitted

and noise vectors is derived in (2.32), where H is the channel convolution matrix as

derived in Section 2.3.2 [4:694]. Note that the final line assumes that the noise vector

is composed of independent, identically distributed random variables with variance

σ2.

Ry = E
[
yyH

]

= E
[

(Hx + ν) (Hx + ν)H
]

= E
[
HxxHHH

]
+ E

[
νν

H
]

= HRxH
H + Rν

= HRxH
H + σ2I (2.32)
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Rewriting the correlation matrix of the received signal in terms of eigenvalues

and eigenvectors using Mercer’s theorem (also called the spectral theorem) produces

ON−1∑

k=0

λy,kqy,kq
H
y,k =

ON−1∑

k=0

λz,kqz,kq
H
z,k + σ2I , (2.33)

where qy,k and λy,k are the eigenvectors and eigenvalues of the composite received

signal correlation matrix Ry, qz,k and λz,k are the eigenvectors and eigenvalues of the

noiseless transmitted signal’s correlation matrix after channel effects, O is the number

of received samples per transmitted symbol, and N is the total number of received

symbols [4:813]. Because each correlation matrix R is positive semi-definite, the

eigenvalues of each term in (2.33) are all nonnegative. Although each term produces

a square correlation matrix of size ON , the correlation matrix of the transmitted

signal HRxH
H has a rank of only (N + L), where L is the channel length in terms of

symbol periods (effective channel order). Thus, HRxH
H has at most (N +L) positive

eigenvalues and ON−(N +L) eigenvalues equal to zero. This naturally divides vector

space of Ry into two subspaces: the eigenvectors corresponding to the (N +L) largest

eigenvalues span the signal subspace and the eigenvectors corresponding to the rest

of the eigenvalues (each with magnitude σ2) span the noise subspace [11].

Defining the eigenvectors spanning the noise subspace as gk leads to (2.34).

Substituting Ry as defined in (2.32) into (2.34) leads to (2.35) [4:695]. This result can

also be reached directly by stating that the noise subspace spanned by gk is orthogonal

to the subspace defined by the columns of the convolution matrix H. Moulines, et

al. showed that solving (2.35) for H with the restriction H 6= 0 produces a unique

solution (with an arbitrary scale factor) [11].

Rygk = σ2gk, k = N + L + 1, . . . , ON (2.34)

HHgk = 0, k = N + L + 1, . . . , ON (2.35)
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To cleanly extract the channel coefficients h, (2.35) is often restructured. In (2.36),

each eigenvector gk has been recast into a convolution matrix Gk following the process

in Section 2.3.2.

GH
k h = 0 (2.36)

Furthermore, (2.36) can be expressed as a scalar by setting the square norm of GH
k h

to zero:
∥
∥GH

k h
∥
∥

2
= hHGkG

H
k h = 0 . (2.37)

Finally, a cost function can be defined in terms of (2.37). In this cost function (2.38),

the eigenvector convolution matrix is replaced by an estimate computed from the block

of received samples. The cost function can then be minimized under the constraint

that h 6= 0 [4:697].

J(h) = hH

(
ON−N−L−1∑

k=0

ĜkĜ
H
k

)

h (2.38)

After identifying the channel estimate, the estimated channel convolution matrix

Ĥ can be constructed directly. An estimate of the transmitted signal can be obtained

by taking the pseudoinverse of Ĥ:

x̂ = Ĥ†y =
(

ĤHĤ
)−1

ĤHy . (2.39)

Alternatively, using the singular value decomposition of Ry to extract the eigenvalues

leads to a transmitted signal estimation method that does not require the additional

pseudoinverse computation [20].

In the channel identification development above, several assumptions have been

made. As mentioned previously, the received signal must be cyclostationary in order to

estimate the correlation matrix from via time-averaging [20]. In addition, the channel

noise was assumed to be white (noise samples are uncorrelated). The variance of

the noise was assumed to be known, however, this is not necessary if the effective
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channel order L is known, which is also a known constant in the above subspace

channel identification derivation [4:697]. Accurate channel length estimation is also

critical to extracting the equalizer tap coefficients from the channel estimate, with a

poor estimate leading to an unstable solution. Channel order estimation is preferred

over noise power estimation since numerical methods exist for estimating the effective

channel order without knowledge of the noise variance [8]. Finally, like CMA, the

subspace algorithm relies on the linear independence of the virtual channels [20].

2.4.6 Spectrum Fitting Algorithms. Spectrum fitting channel identification

algorithms based on second order statistics are a frequency domain parallel to the

time domain block subspace algorithms. As an SOS-based algorithm, spectrum fitting

has the potential to accurately identify the channel filtering coefficients in relatively

few symbol periods as compared to HOS-based algorithms. Like the block subspace

method, spectrum fitting performs matrix operations on a collected set of fractionally

sampled symbols, making it periodically adaptive. The channel properties that ensure

a unique identification solution are the same as those for the block subspace algorithm.

The frequency domain approach provides an alternative formulation of the conditions

under which SOS-based channel identification succeeds [3, 19]. Of note, Ding and Li

point out that this method is is not affected by the kurtosis of the input signal, unlike

most CMA algorithms which break down for near-Gaussian sources [3].

The general strategy of spectrum fitting algorithms relies on an estimate of the

power spectral density of the received signal. In the multichannel model, the data

sequence in each branch (or antenna) is stationary, so autocorrelation can be estimated

via time averaging. Taking the Fourier transform of each antenna produces O power

spectral density functions, referred to as “cyclic spectra” [19]. The coefficients of the

cyclic spectra can be used to construct a block convolution matrix similar in spirit to G

in the subspace decomposition algorithm. This leads to an error minimization solution

involving a singular value decomposition of the block convolution matrix. Because
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spectrum fitting is a frequency domain analog of block subspace decomposition, it is

not investigated further in this thesis.

2.4.7 Cumulants Method. Shalvi and Weinstein have proposed a direct blind

equalization method based on matching selected second and fourth order statistics of

the channel input and equalization filter output. The result is an adaptive gradi-

ent descent algorithm similar in spirit to CMA, with the advantage that source signal

distributions with kurtosis exceeding the kurtosis of the Gaussian distribution (super-

Gaussian) are allowable. Specifically, the Shalvi-Weinstein method assumes the source

distribution consists of zero-mean, identically distributed independent symbols and

that the first through fourth moments of the source distribution exist. Additionally,

the excess kurtosis of the source distribution cannot equal zero, so Gaussian distri-

butions are not equalized by this method. The channel constraints for the Shalvi-

Weinstein algorithm are the same as those for CMA [14].

The mathematical foundation developed in [14] upon which this algorithm is

based is the following theorem:

If E
[
|x̂(n)|2

]
= E

[
|x(n)|2

]
,

then |K (x̂(n))| ≤ |K (x(n))| , (2.40)

where

K (x(n)) = E
[
|x(n)|4

]
− E2

[
|x(n)|2

]
−

∣
∣E

[
x2(n)

]∣
∣
2

. (2.41)

K (x(n)) is kurtosis as defined in [14]. The kurtosis magnitude of the input and

output symbols in (2.40) are equal when the combined channel/filter response is a

discrete unit impulse. In other words, when the output sequence of the equalizing

filter is identical to the input sequence with some delay, then the kurtosis of the two

sequences is equal (assuming the sequences have equal power) [14].

This leads to the adaptive equalization strategy of selecting filter coefficients

to maximize the kurtosis of the output sequence under the equal power constraint
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E
[
|x(n)|2

]
= E

[
|x̂(n)|2

]
. The constrained maximization problem leads to a gradient

ascent formulation. This gradient ascent form, in turn, can be transformed into a

symbol-by-symbol iterative approximation:

ŵ(n + 1) = ŵ(n) + µ · [sgn K(x̂(n))] |x̂(n)|2 x̂(n)ỹ∗(n) . (2.42)

where ỹ∗(n) is the received symbol stream passed through a whitening filter. For

source signals with sub-Gaussian kurtosis, the tap update algorithm proposed in [14]

simplifies to gradient descent using the CMA error term (2.29). Because the DPSK

constellations used in this thesis are sub-Gaussian, the cumulants method is not stud-

ied as a potential non-cooperative receiver.
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III. LPI Signal Design

The goal of this thesis is to investigate a communications signal structure that

resists equalization by blind methods, leveraging non-cooperative receivers’ re-

liance on blind equalization to create an LPI signal. In designing such a scheme, the

impact to the cooperative communications link must also be considered, both in terms

of transmission accuracy and system complexity. This chapter proposes a strategy of

introducing a time dither into the symbol synchronization of the transmitter. This

dither creates dynamic ISI at the receiver input which hinders blind equalization. A

cooperative receiver, however, can successfully deconvolve the symbol sequence if the

timing dither of the symbol transmissions is known. The signaling scheme is developed

in detail in Section 3.1. Section 3.2 presents cooperative receiver designs for this com-

munications signal and Section 3.3 discusses the behavior of notional non-cooperative

receivers with blind algorithms with respect to the symbol dither signal.

3.1 Signal Design

All equalization techniques discussed in Chapter II rely on a sufficiently slow

time variation in the effective channel impulse response. This thesis investigates the

feasibility of achieving LPI characteristics in a communications signal by injecting

time-varying ISI into the waveform via dither in the symbol transmission synchro-

nization. To prevent signal interception, the resulting ISI must be severe enough

to prevent meaningful demodulation and vary in time in a manner that prohibits

effective blind equalization.

More explicit discussion of synchronization dither requires additional notation.

In most traditional transmitters, communications symbols are transmitted at a con-

stant rate with the leading edge of each symbol exactly Tsym seconds apart. To create

ISI in the LPI waveform, let the leading edge of each symbol be delayed up to an entire

additional symbol period. In other words, the LPI waveform is composed of a series

of time blocks of duration Tsym, each block containing the leading edge of exactly

one communications symbol somewhere within the block. This dithering method pre-
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DAC Ditherx(n) x(ct)(t)

Figure 3.1: A dither block in the transmitter creates ISI.

serves symbol order and fixes the average symbol transmission rate to a constant rate

of 1/Tsym, simplifying the cooperative receiver demodulation process.

The delay of the nth symbol relative to the leading edge of the nth symbol period

is d(n). This delay is applied after the DAC in the single channel communications

model in Figure 2.1, as shown in Figure 3.1. This delay implementation of dither

requires a new expression for x(ct)(t):

x(ct)(t) =
N−1∑

n=0

x(n)δ (t − nTsym − d(n)) , (3.1)

where d(n) is a sample of random variable D with a probability density function

p
(ct)
D (t) and ct denotes a continuous time waveform. This thesis considers uniform

density functions, although more exotic density functions are possible, so long as the

function is zero for t < 0 and t ≥ Tsym. The uniform dither distribution is completely

defined by the dither range, which is 0 ≤ d(n) < Tmax. The probability density

function can be written in terms of Tmax according to

p
(ct)
D (t) =







1/Tmax
, 0 ≤ t < Tmax

0, t < 0 or t ≥ Tmax .
(3.2)

Clearly, for p
(ct)
D (t) to satisfy the restrictions above, the dither range Tmax is restricted

to [0, Tsym].

In practice, the sequence of symbol delays is a pseudorandom sequence with

terms selected from a discrete set of possible delays. In this discrete case, the symbol

period is subdivided into P evenly-spaced possible dither values. The probability
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density function for a discrete uniform random variable D is given by

p
(ct)
D (t) =

1

pmax + 1

pmax∑

p=0

δ

(

t − pTsym

P

)

, (3.3)

where pmax must be from the set of integers ranging over [0, P ). The parameter pmax

in the discrete distribution is related to the dither range Tmax according to

pmax =

⌊
PTmax

Tsym

⌋

, (3.4)

where ⌊x⌋ is the largest integer not exceeding x.

As a pseudorandom sequence, the delay code d(n) will have some finite pe-

riod Nd. In most cases, this thesis considers long delay codes with periods Nd larger

than the number of transmitted symbols. The cooperative receiver described in Sec-

tion 3.2.1, however, requires short period relative to the number of symbols available

for training the equalization filter(s).

The severity of ISI in this waveform is a function of the pulse shape and the

symbol delay probability density function. Conceivably, symbol-to-symbol variation

in the pulse shape of the communications waveform could be used as an alternative

or in addition to symbol synchronization dither to inject ISI. Pulse shape variation,

however, introduces additional complexity on matched filtering in the cooperative re-

ceiver. For this reason, the LPI benefits due to intentional ISI are characterized using

a fixed pulse shape and varying symbol dither according a pseudorandom sequence.

3.2 Cooperative Receiver Strategies

This thesis develops cooperative receiver designs by applying signal processing

techniques on the sampled matched filter output. To effectively demodulate a pseudo-

random dither waveform (PDW), a cooperative receiver uses some knowledge of the

delay sequence used to generate the waveform in the transmitter. Two methods are

suggested here. In the first, the periodic nature of the symbol delay sequence is uti-
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Figure 3.2: Generic structure for the cooperative and non-cooperative receivers
described in this chapter.

lized. In the second cooperative receiver design, full knowledge of the delay sequence

is assumed to construct an equalization filter according to the MSE algorithm (in a

line-of-sight environment).

Both the cooperative and non-cooperative receivers discussed in the remainder

of this chapter use the structure shown in Figure 3.2. The signal at the receiver

input r(ct)(t) is passed through a matched filter based on the communication signal

pulse shape. For non-cooperative receivers, it is assumed that the pulse shape can

be estimated using the power spectral density of the received waveform. The rate

at which the matched filter output is sampled and the Post-Processing block are

specific to the different receiver structures. The resulting estimate of the source

symbol sequence x̂ (n) is demodulated to produce the output bit stream.

3.2.1 Bank of Equalizers. This equalization structure takes advantage of the

periodicity of the symbol delays in the delay code sequence. Assuming the physical

channel is static, all samples at the matched filter ouptut spaced (NdTsym) seconds

apart are subject to the same effective channel. Thus each collection of these samples

is WSS. A cooperative receiver with knowledge of the delay sequence period can cycle

through a bank Nd equalization filters, one for each effective channel. Thus, this

multiple filter approach is only feasible for dither codes with small periods due to

convergence and coefficient storage considerations. The impact of short period codes

is discussed in greater detail below. The receiver structure for a fractionally spaced

equalizer with oversampling rate 2 and delay code period Nd is depicted in Figure 3.3.
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Figure 3.3: By applying a different equalizer w
(i)
j for each pseudorandom dither

entry in the dither code, the effective channel at each equalizer input is static, allowing
the filters to converge.

The remaining task is to find the equalizer filter taps such that the output of each

filter is an estimate of a unique decimation of the original symbol sequence x(n−δ). In

other words, to produce a complete estimate x̂(n), each filter must estimate x(n− δ)

decimated by Nd, but with different phases. In addition, the phase of each must be

known so that filter outputs can be recombined in the correct order. Because the

number of (fractionally spaced) equalizer filters matches the dither sequence period,

the sample statistics at each filter input are stationary and many classical equalization

algorithms are applicable.

Of the equalization algorithms described in Chapter II, the trained approach of

adaptive LMS is the best candidate. The adaptive LMS algorithm can be directly

applied in each filter branch to train each equalizer without introducing any increase

in algorithm complexity. The simplest method to ensure that each estimated symbol

sequence at the equalizer outputs represent unique subsets of the transmitted symbol

sequence x(n) is to use the same δ parameter for each filter. With this approach, the

demultiplexer can recombine the filter outputs using the same order of parsing used

in the multiplexer.

3-5



The CMA method does not extrapolate to a multiplexed approach quite as eas-

ily. The difficulty arises from the indeterminate nature of the delay δ between the

source sequence and the estimated sequence at the equalizer output in the classical

CMA implementation. This algorithm approximates the sequence x(n − δ), but δ is

not specified explicitly. In the equalizer bank approach proposed here, each equal-

izer is computed independently and may result in different integer values of δ. If

this happens, the parallel equalizers may produce estimates of the same decimation

of the original symbol sequence, while other subsequences are not estimated at all.

Notionally, it should be possible to force each equalizer to produce a symbol sequence

uncorrelated with the output of each other equalizer, but this requires increased com-

plexity. Furthermore, even if the symbol subsequence in each branch is independent,

the proper order for recombining the equalizer outputs into a single sequence is not

known.

The subspace algorithm first computes a channel estimate which is used to find

an equalization filter, so the relative delay δ between the input and output symbol

sequences can be controlled explicitly. The robustness of the equalizer with respect to

noise, however, is highly dependent on the value of δ, so only a subset of possible delays

are reasonable candidates for a particular effective channel impulse response [11]. It

is conceivable that the effective channels seen at the equalizer inputs will be similar

enough to have a common δ value that is near-optimal for each filter branch, although

not guaranteed.

In addition to only minor additional complexity in the receiver architecture, ad-

vantages of the LMS bank of equalizers scheme include intrinsic multipath mitigation

and modest a-priori knowledge of the delay sequence in the transmitter. The only

knowledge of the pseudorandom delay sequence used to create the waveform in the

transmitter is the period Nd. Any change in the delay code or the physical channel

merely requires the equalization filters to be retrained. Typically, a communications

system using LMS equalization will retransmit the training sequence periodically. If
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the sequence is sufficiently long for the filters in the receiver to converge, the dither

code could be changed in the transmitter every time the training sequence is resent.

A major limitation of this method is slow filter convergence and increased mem-

ory requirements to store coefficients for Nd filters. The number of training symbols

for convergence is increased by a factor of Nd over a standard transmitter/receiver

configuration because each equalizer must be trained independently and only sees

one symbol for every Nd symbols transmitted. For long delay codes (with large pe-

riods), equalization filter convergence time may be prohibitively large. Similarly, the

coefficients for each of the Nd filters must be stored within the receiver, limiting the

code period. Certainly, any decrease in the dither code length may facilitate code

estimation by a non-cooperative receiver. In addition, a short code uses few samples

of the random variable D, and may not be a good representation of the governing dis-

tribution. As a result, a particular (short period) code may have unique ISI severity

corresponding to widely disparate degrees of LPI protection.

3.2.2 MSE Minimization Using Known Delay Sequence. If the pulse shape

and the delay code sequence of the PDW are known by the receiver, the ISI at the

matched filter output due to overlapping symbol shapes can be expressed as a known

time-varying impulse response. In a line-of-sight, lossless environment, each sample of

the matched filter output can be written in terms of a discrete impulse response that

describes the contribution of input symbols to the output sample in question. For a

completely known channel, MSE minimization is a common approach for computing a

discrete FIR filter to deconvolve the channel effects. Typically, the MSE minimization

algorithm assumes a constant channel impulse response and produces a single filter.

In the PDW equalization problem, a unique MSE minimization solution must be

found for each of the Nd elements in the delay code sequence.

The theoretical foundation of the MSE algorithm presented in [18:287] is sim-

ilar to the adaptive LMS development discussed in Section 2.4.2. Instead of using

stochastic methods to estimate the expected value of the correlation matrices in the
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cost function (3.5), however, the matrix coefficients of Ry and pxy are known.

J(n) = E [x∗(n − δ)x(n − δ)] − 2Re
{

E
[
x(n − δ)yH(n)

]
w∗

}

+ wT
E

[
y(n)yH(n)

]
w∗

= E [x∗(n − δ)x(n − δ)] − 2Re
{
pT

xyw
∗
}

+ wTRyw
∗ (3.5)

By setting the cost function gradient (3.6) to zero, the optimal equalization filter in

the mean-square error sense can be found explicitly (3.7).

∇wJ(n) = −2pT
xy + 2wTRy (3.6)

wopt =
(
RT

y

)−1
pxy (3.7)

In adapting the MSE algorithm for the pseudorandom delay waveform, a frac-

tionally spaced implementation is considered. The vectorized matched filter output

y(n) is a columnwise stack of the sampled subchannels at the matched filter output

(see (2.17) and (2.22) in Section 2.3.2). Similarly, the subchannel equalization filters

are stacked in a column:

w(n) =








w(O)(n)
...

w(1)(n)








. (3.8)

In traditional MSE, the effective channel impulse response is static and the

source sequence x(n) is uncorrelated, so the received sequence within each subchannel

y(i)(n) is stationary and the autocorrelation E
[
y(i)(n1)y

(i)∗(n2)
]

is dependent only on

the difference δ = n2−n1 and reduces to E
[
y(i)(n)y(i)∗(n − δ)

]
. In the pseudorandom

delay waveform, ISI due to pulse shape dither creates Nd different effective channels.

To signify this, let HN(n) denote the convolution matrix that maps the transmitted

symbols in vector x(n) to the output sample vector y(n). Note that the convolution

matrix must now be indexed by n to account for the potentially unique delay applied

to each symbol. The autocorrelation matrix, then, is also dependent on n according
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to

Ry(n) = E
[
y(n)yH(n)

]
,

= E
[

(HN(n)x(n) + b(n)) (HN(n)x(n) + b(n))H
]

,

= E
[
HN(n)x(n)xH(n)HH

N(n)
]
+ E

[
b(n)bH(n)

]
,

= HN(n)RxH
H
N(n) + Rb . (3.9)

In a similar manner, the cross-correlation vector pxy(n) is dependent on the symbol

index n:

pxy(n) = E [y∗(n)x(n − δ)] ,

= E [(HN(n)x(n) + b(n))∗ x(n − δ)] ,

= H∗
N(n)E [x∗(n)x(n − δ)] . (3.10)

Finally, the MSE optimal filter is now indexed by symbol as well:

wopt(n) =
(
RT

y (n)
)−1

pxy(n) . (3.11)

The remaining task is to find the parameters that define Ry(n) and pxy(n).

Specifically, HN(n), Rx, Rb, and E [x∗(n)x(n − δ)] must all be assigned numeric

values.

If the source sequence x(n) is zero-mean iid, then Rx is simply the identity

matrix scaled by E [x∗(n)x(n)] and E [x∗(n)x(n − δ)] has only one non-zero term

with value E [x∗(n)x(n)] at the (δ + 1)th element.

The elements within noise autocorrelation matrix Rb can be expressed analyt-

ically in terms of the white Gaussian noise power spectral density in the physical

channel No and the matched filter f(t). Each element of

Rb = E
[
b(n)bH(n)

]
(3.12)
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can be expressed as E [b′(k1)b
′∗(k2)]. Substituting for the definition of b′(k) from (2.7)

in Section 2.3.1 gives

E [b′(k1)b
′∗(k2)] =

E
[∫ ∞

−∞
f (ct) (τ1) ν(ct) (T1 − τ1) dτ1

∫ ∞

−∞
f (ct)∗ (τ2) ν(ct)∗ (T2 − τ2) dτ2

]

,
(3.13)

where

T1 =
k1Tsym

O
,

T2 =
k2Tsym

O
.

The whiteness property of the AWGN signal ν(ct)(t) implies that the autocorre-

lation is

E
[
ν(ct)(t1)ν

(ct)(t2)
]

=







No, t1 = t2

0, t1 6= t2 .
(3.14)

Applying this to (3.13), the two-dimensional integration over area dτ1dτ2 is only non-

zero when T1 − τ1 = T2 − τ2. As a result, (3.13) reduces to a line-integral of the

form

E [b′(k1)b
′∗(k2)] = No

∫ ∞

−∞

f (ct) (τ1) f (ct)∗ (T2 − T1 + τ1) dτ1 . (3.15)

The integrand of (3.15) is simply the convolution of pulse shape f (ct)(t) and the

matched filter f (ct)∗(−t). Thus, the elements of Rb are samples of the convolu-

tion (3.16), scaled by the noise power spectral density No (3.17).

g(ct)(t) = f (ct)(t) ∗ f (ct)∗(−t)

=

∫ ∞

−∞

f (ct) (τ) f (ct)∗ (t + τ) dτ (3.16)
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E [b′(k1)b
′∗(k2)] = Nog

(ct) [(n2 − n1)Tsym + (i2 − i1)Tsym/O] (3.17)

As an alternative to analytically solving for the elements of Rb as shown above,

the filtered noise correlations can be estimated by time-averaging the samples of

the matched filter output when the communications waveform is not present, taking

advantage of the WSS nature of the filtered noise.

Finally, the convolution matrix HN(n) must be found. As mentioned above,

HN(n) is indexed by symbol n because of the unique timing delay of each symbol. In

a convolution matrix, each column represents the sampled lattice of the continuous

time effective channel impulse response that models the amplitude scale factor of a

particular symbol at future points in time. In the PDW model described in this thesis,

the continuous time effective impulse response h
(ct)
eff (t) is the same for each transmit-

ted symbol. The pseudorandom timing delay of each symbol, however, impacts the

synchronization of the sampling lattice relative to h
(ct)
eff (t) that models the influence

of a symbol at each sample of the matched filter output. In other words, each column

of HN(n) contains the a sampled lattice of the effective channel impulse response,

but with potentially differing sampling phases as determined by the delay of each

particular symbol. Taking the sampling lattice phase offset due to a symbol’s delay

d(n), the ith subchannel impulse response defined in (2.14) is now written as

h(i)(n) = [h
(ct)
eff ((i − 1)Tsym/O − t0 − d(n)) , h

(ct)
eff ((O + i − 1)Tsym/O − t0 − d(n)) ,

h
(ct)
eff ((2O + i − 1)Tsym/O − t0 − d(n)) , ...,

h
(ct)
eff (((L − 1)O + i − 1)Tsym/O − t0 − d(n))]T ,

= [h(i)
n (0), h(i)

n (1), h(i)
n (2), ... h(i)

n (L − 1)]T . (3.18)
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Consequently, the subchannel convolution matrix for the pseudorandom delay

waveform is

H
(i)
N

(n) =
N+L

︷ ︸︸ ︷










h
(i)
n (0) · · · h

(i)
n−L+1(L − 1) 0 · · · · · · 0

0 h
(i)
n−1(0) · · · h

(i)
n−L

(L − 1) 0 · · · 0
...

...

0 · · · · · · 0 h
(i)
n−N+1(0) · · · h

(i)
n−N−L+2(L − 1)

















N

(3.19)

and the composite convolution matrix HN(n) is constructed by stacking the subchan-

nel convolution matrices column-wise as in (2.22). With these definitions, wopt(n) can

now be calculated from (3.11).

Because the equalization filters are deterministic, this modified MSE cooperative

receiver design has no need to estimate signal statistics like the algorithms presented

in Chapter II. Instead, the equalization filter taps are computed analytically. For

a static physical channel and a particular delay code sequence, Nd filters must be

calculated. Thus, the initial computational complexity for a new effective channel

h
(ct)
eff (t) involves computing Nd matrix inverses, which only need to be computed once.

The symbol estimation of the modified MSE receiver is optimal in the mean-

squared error sense with respect to the available samples. Because the matched

filter output is sampled at a constant rate and samples are not synchronized to the

symbol dithers, some symbol energy loss is expected due to non-optimal sampling.

Oversampling helps compensate for this suboptimal sampling strategy.

Computation of the effective channel impulse response is not directly addressed

in the receiver design. Under line-of-sight conditions, knowledge of the pulse shape

(which is assumed to allow the receiver to use a matched filter) and the transmission

delay is sufficient. In the case of a multipath physical channel, the channel model

must be estimated, possibly via transmission of a known training waveform.
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PSfrag

r(ct)(t) {bout}

y(ct)(t)

1/Tsym

x̂ (n)

Figure 3.4: Generic structure for the cooperative and non-cooperative receivers
described in this chapter.

The calculation of each equalization filter wopt(n) requires that the cooperative

receiver have full knowledge of the pseudorandom symbol delay sequence used in the

transmitter. Also, the receiver must be fully synchronous in the sense that the symbol

estimate x̂(n − δ) relies on the application of the corresponding filter wopt(n).

3.3 Non-cooperative Receivers

Several non-cooperative receiver structures are considered here with respect to

their ability to exploit an intercepted PDW. Each notional non-cooperative receiver

is assumed to have knowledge of the symbol period, pulse shape, and symbol con-

stellation, but no knowledge of the symbol dither constants d(n). A basic receiver

that makes no attempt to account for the symbol timing dither is be considered first.

Next, a receiver with blind multipath equalization processing is considered. A third

possible non-cooperative receiver strategy involves estimating the symbol delays to

sample the matched filter output asynchronously.

3.3.1 Basic Receiver. This section considers the receiver shown in Fig-

ure 3.4. Note that the matched filter output is sampled at a rate of 1/Tsym, with con-

stant time Tsym between successive samples. No post-processing is performed. The

sampling phase is synchronized to the optimum time for a symbol with delay d(n)

equal to the mean of the probability density function associated with D.

Assuming a line-of-sight physical channel and a traditionally modulated wave-

form (with no symbol timing dither), if the matched filter output samples are syn-

chronized to the received waveform, intersymbol interference is not present. For the
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PDW in a line-of-sight channel, the ISI is now solely due to pulse shape overlap caused

by symbol dither. Thus, any statistically significant deviation from the bit error rate

without symbol timing dither can be attributed to the ISI induced by the PDW.

3.3.2 Blind Equalizer Receiver. Because the structure of multipath inter-

ference is similar to the ISI caused by symbol timing dither in the PDW, a non-

cooperative receiver using blind equalization techniques is considered here. Equal-

ization to mitigate the ISI within the PDW is attempted using equalizer filters de-

termined by the Constant Modulus Algorithm and the subspace decomposition algo-

rithm. Fractionally-spaced versions of both equalization algorithms are implemented,

with the matched filter output in Figure 3.2 sampled at a rate of 2/Tsym. As in the

basic receiver architecture described in the previous section, the sampling is synchro-

nized to the mean symbol dither.

Equalization using CMA and subspace decomposition is described in Section 2.4.3

and Section 2.4.5, respectively. Both of these methods rely on the cyclostationarity

of the oversampled matched filter output, which is clearly violated by the dynamic

ISI within the PDW. However, it is conceivable that the average interference between

symbols based on their relative indexes could lead to some benefit from an equaliza-

tion filter. Any potential BER improvement from such a strategy would depend on

the particular pulse shape and the distribution of the delay terms d(n).

3.3.3 Symbol Dither Estimation Receiver. In the previous two non-cooperative

receivers, standard techniques are considered with respect to the PDW. The archi-

tecture considered here specifically targets interception of a PDW (in a line-of-sight

environment or known physical channel impulse response). Assuming knowledge of

the pulse shape, signal power, and the symbol constellation, a symbol can be assigned

to each symbol period that best fits the received waveform in a sum (or mean) squared

error sense. Within each symbol period, the receiver searches for the symbol and de-

lay pair that minimizes the sum squared difference between the received waveform

and the estimated symbols. This is accomplished by creating an estimated waveform
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in the receiver via modulation of the estimated symbol sequence and application of

the estimated time dither to each symbol.

Symbol and delay estimation proceeds as follows. Using the known effective

channel impulse response and signal power at the receiver input, the continuous time

signal representing each symbol in the constellation can be created within the receiver.

Using complex baseband symbols, let

s
(ct)
i (t) = sih

(ct)
eff (t) (3.20)

be the continuous time shape for complex symbol si at the receiver (see (4.2)). The

receiver must assume some finite set of Q̂ possible symbol dither values for each of

N symbols. The initial estimated waveform is ŷ
(ct)
0 (t) = 0. Symbols are estimated by

taking N iterations of the three steps below.

(1) : z
(ct)
j (t, i, q, n) = ŷ

(ct)
j−1 (t) + s

(ct)
i

(

t − qTsym/Q̂ − nTsym

)

(2) : ij, qj,nj = arg min
i,q,n

{
∫ t0+NTsym

t0

[

y(ct) (t) − z
(ct)
j (t, i, q, n)

]2

dt

}

(3) : ŷ
(ct)
j (t) = ŷ

(ct)
j−1 (t) + s

(ct)
ij

(

t − qjTsym/Q̂ − njTsym

)

(3.21)

In step (1), all valid combinations of symbol and symbol are used to create temporary

signal estimates by adding the potential symbols to the previous iteration’s estimate.

Step (2) selects the symbol i, symbol index n, and symbol dither q set that results in

the smallest sum error term. Finally, the new signal estimate is created in step (3).

The ranges of i and q are the same for each iteration. All symbols in the M−ary

constellation are considered for i and the dither estimate ranges over the set of all

possible integer steps: q ∈
[

0...Q̂ − 1
]

. The search range of n begins as the integers

from 0 to N − 1, inclusive, but shrinks with each iteration. After each iteration,

one symbol is estimated and no future iterations can assign a symbol to that symbol

period, so nj is removed from the search range. After N iterations, one symbol

has been estimated per each symbol period. Note that this process assumes that
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the receiver is able to synchronize to the symbol period boundaries of the received

waveform.

The computational complexity of this approach is not trivial. The search space

of the first iteration alone requires computing
(

MQ̂N
)

error terms, where N will often

be quite large. To be feasible, only a fraction of the received symbols is considered at

a time.

Optimization of this symbol estimation technique is beyond the scope of this

thesis. The iterative method described here could be replaced by a Viterbi-like tech-

nique the considers
(

MQ̂
)

branches at each node. Sparse channel identification

techniques may also apply to this problem by considering the series of symbols (mod-

eled as complex impulses in the PDW) as the impulse response of a sparse multipath

channel. Symbol estimation is then the equivalent to the sparse channel identifica-

tion problem, with the additional restrictions that each channel ray must be one of

the complex symbols in the communications constellation si and only one impulse is

allowed in each symbol period. In the sparse channel identification method proposed

by [1], estimation of the ray locations is performed prior to estimation of ray magni-

tude. The ray location estimation is analogous to estimating the symbol dither and

could be used in the cooperative receiver MSE approach from Section 3.2.2.
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IV. Numerical Simulation Design

In this chapter, a numerical simulation is developed to investigate the LPI sig-

nal design from Chapter III. The model includes a transmitter, dispersive noisy

channels, and receivers employing several equalization techniques. The simulation

calculates the experimental bit error rate for a transmitter, channel, receiver set.

The Matlab
r model is described in Section 4.1 and the associated parameters

are outlined in Section 4.2. Modeling limitations and assumptions of the simulation

are discussed in Section 4.3. The remainder of the chapter validates the components

of the model by comparing the model outputs under input conditions for which the

result is predictable.

4.1 Model Overview

The end-to-end communications system depicted in Figure 4.1 is modeled by

a discrete numerical Matlabr simulation. The transmitter block converts the input

bit stream into a baseband waveform representing a series of DPSK symbols. The

waveform is a discrete sampling of the analog waveform leaving the transmitter. The

channel injects white Gaussian noise and any multipath effects into the system. Fi-

nally, the receiver module estimates the transmitted symbols from the received signal

(which now includes channel effects) and produces the output bit sequence.

4.1.1 Transmitter. The transmitter (Figure 4.2) produces the sampled

transmit waveform u(p) from the input bit sequence. The bit sequence is a pseudo-

random binary sequence generated by the Marsaglia subtract and borrow algorithm

as implemented in Matlab
r .

Transmitter Channel Receiver{bin} {bout}

Figure 4.1: Numerical simulation block diagram
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DPSK
Modulator

P Delays
Pulse
Shape

replacemen

{bin}

x(n) xup(p)

u(p)

Figure 4.2: Simulated transmitter block diagram

This simulation uses Differential Phase Shift Key (DPSK) modulation to encode

the input bit sequence into a series of complex symbols. In this baseband model,

the in-phase and quadrature components of the PSK signal are represented by the

real and imaginary parts of the symbol, respectively. In the complex symbol space,

DPSK constellations are circularly symmetric about the origin, with equal magnitude

symbols and constant phase difference between adjacent symbols. In a constellation

with M symbols, the input bit stream is segmented into words of length l = log2(M)

bits. Each l-bit word is mapped to a phase offset using Gray coding. Per (4.1), the

corresponding symbol is found by adding the phase offset to the phase of the previous

symbol in the series [16:195].

x(n) =







s1, n = 1

cos (θn) + j sin (θn) ,n > 1
(4.1)

θn = θn−1 + ∆θn

Figure 4.3 shows a 4-ary DPSK constellation with the associated phase shift mapping

in Table 4.1. In this example, the input bit stream 110001 results in the symbol

sequence

[x(1), x(2), x(3), x(4)] = [s1, s3, s3, s4] , (4.2)

where

si = cos (θi) + j sin (θi) ,

θi =
π

4
+

(i − 1)π

2
.
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Figure 4.3: 4-ary DPSK Constellation

Table 4.1: 4-ary DPSK Gray code mapping

Word Phase Shift, ∆θ

00 0

01 π
2

11 π

10 3π
2
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Noise

Physical 
Channel

+
+

u(p) hphys

ν(p)

z(p)

r(p)

Figure 4.4: Simulated channel block diagram

The Upsampling Block increases the sampling frequency by inserting an integer

number of zero-valued samples between each symbol. After upsampling, the symbols

are now complex impulses spaced P samples apart (so the sampling rate is P/Tsym

samples per second). Discrete representations of continuous time signals in the nu-

merical simulation are indexed by p.

Symbol timing dither to create ISI is implemented by the Delay Block. The

dither is realized by moving each impulse some integer number samples according to

the delay code.

Finally, the data signal consisting of complex impulses is convolved with the

pulse shape signal f(p) to produce the transmitted waveform.

4.1.2 Channel. The simulated physical channel is a combination of disper-

sion (hphys) and AWGN (ν(p)) as seen in Figure 4.4. Dispersion (or multipath) effects

are included by convolving the transmitted waveform with the impulse response of the

physical channel. All physical channel models in the simulation are static. Because

this is a baseband simulation, the phase distortion that could be caused by multipath

carrier signal interference is not directly included in this model. To indirectly include

phase distortion, the coefficients of the physical channel impulse response are allowed

to be complex.
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Figure 4.5: Simulated receiver block diagram

After applying the multipath effects, AWGN is added to the signal. The discrete

noise samples are complex, with both the real and imaginary parts of each noise

samples following an independent Gaussian distribution. The Marsaglia ziggurat

algorithm in Matlab
r is used to produce pseudorandom Gaussian samples. The

variance of both the real and imaginary Gaussian distributions is scaled to achieve a

desired SNR at the channel output (equivalent to the input of the receiver).

4.1.3 Receiver. The simulated receiver model performs matched filtering,

downsampling, post-processing, and demodulation (Figure 4.5). The matched fil-

ter convolves the received signal with the same pulse shape used in the transmitter.

Downsampling of the filtered signal to a sampling period of Tsym/2 results in two

samples per symbol period. Although the simulation is expandable to downsample

at higher rates, fractionally spaced equalization algorithms are restricted to two sub-

channels in this thesis. Receiver models using symbol spaced data use only the first

subchannel y(1)(n). Note that for symbol spaced receiver structures, downsampling

synchronization significantly impacts the SNR at the downsampler output. This sim-

ulation synchronizes the first subchannel to the point where the impulse response of

the effective channel (including the effects of the pulse shape, physical channel, and

matched filtering) has maximum magnitude. This strategy maximizes the SNR for the

standard transmitter (no pseudorandom symbol delay) under line-of-sight conditions.

When the pseudorandom dither transmitter is used, the first subchannel synchronizes

to the average location of the maximum effective channel impulse response within the

symbol period.
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Both continuously adaptive and periodically adaptive equalization algorithms

are modeled in this thesis. To directly compare the bit error rates of continuously

and periodically adaptive methods, the equalizer coefficients are held constant during

data collection. The coefficients are determined by training the equalizer prior to each

experiment using an independent series of bits.

The DPSK demodulator uses the phase difference between the current complex

estimated symbol and the previous estimated symbol to map to a bit string. Because

the bit estimation is based only on the phase difference between successive symbols,

this DPSK demodulation technique is not affected by rotation of the constellation

caused by phase ambiguity. Sklar calls this differentially coherent detection of differ-

entially encoded PSK modulation [16:218]. For binary DPSK, the probability of bit

error is

Pb =
1

2
e

−Eb
No , (4.3)

where Eb is the information signal average energy per bit and No is the noise power

spectral density. Eb is derived from the average energy per symbol Es and the number

of symbols in the constellation M :

Eb =
Es

log2(M)
. (4.4)

Because DPSK demodulation considers both the current symbol and the previous

symbol, Es includes the energy of both.

For differentially coherent detection of M -ary DPSK, the approximate proba-

bility of symbol error is [16:230]

PE(M) ≈ 2Q

(√

2Es

No

sin
π√
2M

)

. (4.5)

This approximation is valid only for large Es/No ratios. The large Es/No approxima-

tion leads to the assumption that most symbol errors result in misidentification as an

adjacent symbol, producing only one bit error per symbol error due to Gray coding.
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In this manner, the probability of bit error for M -ary DPSK is estimated by [16:230]

Pb(M) ≈ PE(M)

log2(M)
. (4.6)

The simulation produces an output bit sequence that is a truncated estimate of

the input bit sequence. This truncation is due to the convolution operation used to

apply the effective channel and the equalization filter. The linear convolution output

is restricted to the terms for which both signals in the convolution overlap completely.

In this manner, the convolution of signals with M and N samples produces a signal

with |N − M | + 1 samples. The net effect is an estimated symbol series x̂(n) that is

shorter than the transmitted symbol sequence x(n). All observed bit error rates in

the simulation only consider the bits estimated at the output of the receiver, ignoring

the leading and trailing truncated bits.

4.2 Model Parameters

Many transmitter, channel, and receiver parameters are variable in the simula-

tion. The large number of parameters creates a need to be explicit when describing a

particular simulation result. This section discusses the implementation of each mod-

ule (transmitter, channel, and receiver) and defines the relevant parameters. The

simulation parameters are summarized in Table 4.2.

4.2.1 Global Parameters. In numerical modeling, all analog signals are ap-

proximated by discrete signals. The fidelity of the discrete approximation in this

simulation is determined by the number of samples per symbol period, P . All exper-

iments presented herein used 64 samples per symbol period unless otherwise noted.

4.2.2 Transmitter. Within the Transmitter module, the signal constellation,

pulse shape, and symbol delay parameters must be defined. For the purposes of this

simulation, the signal constellation and pulse shape are always assumed to be known

by the receiver.
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Table 4.2: Simulation parameters

P Number of samples per symbol period used to model ana-
log signals

M Number of symbols in the DPSK constellation

Pulse Shape Pulse shape in the transmitter and the corresponding
matched filter in the receiver

d Delay code sequence used to determine the number of
samples to delay each symbol in the transmitter

pmax Maximum allowable delay in the sequence d

hphys Physical channel model

SNR Signal-to-noise ratio as measured the receiver input

Equalization Equalization algorithm and associated parameters
Parameters

O Number of samples per symbol period after receiver
downsampling (Equivalent to the number of subchannels
in the multiple output model)
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Table 4.3: DPSK Gray code mapping

Binary 4-ary 8-ary

Word Phase Shift, ∆θ Word Phase Shift, ∆θ Word Phase Shift, ∆θ

0 0 00 0 000 0

1 π 01 π
2

001 π
4

10 3π
2

010 3π
4

11 π 011 π
2

100 7π
4

101 3π
2

110 π

111 5π
4

Binary, 4-ary, and 8-ary DPSK Gray coded constellations are supported by

the simulation (Figure 4.6). Each constellation is circularly symmetric with equal-

magnitude symbols, satisfying the apriori assumptions of all the equalization tech-

niques discussed in Chapter II. Table 4.3 gives the Gray code phase shift assignments

for each DPSK constellation.

The pulse shapes modeled are impulse, square, and square root raised co-

sine (SRRC), plotted in Figure 4.7. The impulse pulse shape is a single discrete

impulse with unity magnitude. The square pulse shape is a rectangular function with

width equal to the symbol period Tsym. To conserve energy through the Pulse Shape

block in the transmitter, the amplitude of the square pulse shape is 1/Tsym.

For the SRRC pulse shape, the roll-off factor β determines the “spread” of the

shape according to (4.7) [6:225]. Because the SRRC is unbounded in time, the pulse

must be truncated in any physical system. When the SRRC is used in this simulation,

the default pulse window is ten symbol periods wide, centered at t = 0 in the SRRC

4-9



−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Q
ua

dr
at

ur
e

In−phase

s1s2

(a)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Q
ua

dr
at

ur
e

In−phase

s1s2

s3 s4

(b)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Q
ua

dr
at

ur
e

In−phase

s1

s2

s3

s4

s5

s6

s7

s8

(c)

Figure 4.6: (a) Binary DPSK Constellation (b) 4-ary DPSK Constellation (c) 8-ary
DPSK Constellation
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pulse shape equation:

f(t) =







1√
Tsym

sin[π(1−β)t/Tsym]+(4βt/Tsym) cos[π(1+β)t/Tsym]

(πt/Tsym)[1−(4βt/Tsym)2]
, t 6= 0, t 6= ±Tsym

4β

1√
Tsym

[1 − β + (4β/π)] , t = 0

β√
2Tsym

[(
1 + 2

π

)
sin

(
π
4β

)

+
(
1 − 2

π

)
cos

(
π
4β

)]

, t = ±Tsym

4β
.

(4.7)

To implement the symbol timing dither, the Delay Block delays each symbol

impulse up to P − 1 samples. The delay code d is a pseudorandom series of integers

that defines the particular delay of each symbol (4.8). Being a finite pseudorandom

series, the pattern of delays repeats every Nd symbols, where Nd is the length of the

delay code. The maximum allowable delay must be set to less than P − 1 samples

to prevent adjacent symbols from being transmitted in the wrong order (4.9). The

distribution of integer delays in the random delay sequence is always uniform in this

simulation. To model a standard transmitter, the maximum allowable delay is simply

restricted to zero samples.

d , {d(1), d(2), ..., d(Nd)} (4.8)

d(n) ∈ I[0, pmax], 0 6 pmax 6 P − 1 (4.9)

4.2.3 Channel. The simulated physical channel is a combination of disper-

sion and AWGN. The dispersion is applied via convolution with the physical channel

impulse response per Section 4.1. Although any discretized impulse response can be

inserted into the simulation, this thesis characterizes receiver performance using a

line-of-sight, lossless channel with a delay of ten samples.

AWGN is added to the signal after applying the physical channel impulse re-

sponse. The variance of the noise samples can be specified either by SNR or Eb/No at

the receiver input. The actual simulated SNR is then estimated by taking the ratio
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Figure 4.7: (a) SRRC pulse shape, β = 0 (b) SRRC pulse shape, β = 0.25 (c) Square
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of mean squares of the information signal z(p) and noise signal ν(p) according to

SNR ≈
∑ |z(p)|2
∑ |ν(p)|2

. (4.10)

In the line-of-sight case with no multipath effects and no symbol dither, the inter-

symbol interference is negligible (at least for the pulse shapes used in this thesis), so

the signal power in the SNR calculation can be estimated directly from the simula-

tion just prior to adding the noise in Figure 4.4. When ISI is present in the signal,

some clarification is necessary. For the purposes of this document, the signal power is

still measured directly from the simulated signal prior to adding noise (after applying

multipath effects) and noise power is still measured from the AWGN signal ν(p). In

practice, however, the ISI due to multipath, symbol dither, and/or non-ideal pulse

shapes can be treated as an additional noise source. The contribution of ISI to bit

errors is dependent on the quality of equalization, with perfect equalization eliminat-

ing ISI completely. Hence, all SNR calculations in this thesis do not consider ISI as

a source of noise power unless explicitly stated.

4.2.4 Receiver. The receiver parameters are different for each receiver struc-

ture modeled in the simulation. Table 4.4 lists the algorithms and parameters asso-

ciated with each. The optimal set of parameters for each receiver model is highly

dependent on the transmitter and channel parameters. Optimization of a receiver

parameter set is not trivial due to the number of permutations of parameter combi-

nations. In lieu of exhausting all possible receiver configurations, the parameters for

each experiment are chosen by making reasonable assumptions about the receivers

knowledge of the transmitter and the channel.

For algorithms using statistical averaging, N is the number of symbols output

by the transmitter for the purpose of estimating the equalization filter(s). The actual

number of symbols available to the algorithm in the receiver is somewhat less than

N due to truncation of the leading and trailing samples. This truncation omits the

received samples that reflect initiation and termination transients. For most results
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Table 4.4: Equalization algorithm parameters

B
as

ic N/A No parameters necessary

F
S

C
M

A µ Gradient descent step size

M Number of taps in the equalizer (equalizer length)

N Number of symbols used to train the equalizer

S
u
b
sp

ac
e L̂ Estimate of the length of the effective channel (in symbol

periods)

M Number of taps in the equalizer (equalizer length)

N Number of symbols used to train the equalizer

F
S

L
M

S
B

an
k µ Gradient descent step size

M Number of taps in the equalizer (equalizer length)

δ Impulse response delay to which the equalizer converges
(in symbol periods)

N Number of symbols available for equalizer estimation

M
o
d
ifi

ed
M

S
E δ Impulse response delay to which the equalizer converges

(in symbol periods)

L̂ Estimate of the length of the effective channel (in symbol
periods)
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presented in this thesis, N = 5, 000 symbols which is be large enough for algorithms

based on higher-order statistics to reach steady-state. This is required to reflect the

“best case” bit error performance. It should be acknowledged that this approach

renders the superior convergence speed of the subspace decomposition algorithm a

moot point in this simulation.

The gradient descent algorithms, fractionally spaced CMA and the bank of

fractionally spaced LMS equalizers, require an iteration step size µ. The magnitude

of the step size must strike a balance between maximizing convergence speed and

minimizing steady-state error (see Section 2.4.2). For this simulation, µ has been

tuned for each set of transmitter/channel parameters using emperical simulation.

The number of taps in the equalization filter, M , must be defined for the trained

algorithms. For the FS CMA and FS LMS bank receivers, the number of taps is

chosen to satisfy the minimum length condition in (2.30) for (potentially) perfect

equalization, (see Section 2.4.3). The maximum effective channel length is L = 20

symbol periods, so M = 40 unless otherwise noted for these two receivers.

The subspace decomposition algorithm equalization solution is unstable when

the effective channel length estimate L̂ and equalizer length M are overestimated. To

prevent the potential noise amplification that occurs when this happens, these two

parameters are tuned empirically by observing the output bit error rate for a range

of parameter sets for each transmitter/channel configuration.

For the FS LMS bank and modified MSE algorithms, the δ parameter establishes

the difference between the indexing of the input bit stream and the estimated output

bit stream. For an unknown channel, δ is often determined by minimizing bit error

rate over a range of δ values. In simulation, pulse shape duration, physical channel

impulse response, and the matched filter are known and combined to calculate the

effective channel impulse response length L. With this information, each matched

4-15



filter sample y(i)(n) is known to be a function of the previous L symbols according to

y(i)(n) = F [x(n − L + 1), x(n − L + 2), ..., x(n)] . (4.11)

In a similar manner, the estimated symbol x̂(n) is a function of previous M/O matched

filter samples in each subchannel y(i)(n). Combining the effective channel impulse

response length and number of equalization filter taps allows an estimated symbol to

be a function of a specific set of transmitted symbols:

x̂(n) = F

[

x

(

n − M

O
− L + 2

)

, x

(

n − M

O
− L + 1

)

, ..., x(n)

]

. (4.12)

Combining (4.11) and (4.12) provides the natural bounds on δ:

δopt ∈
{

0, 1, ..., L +
M

O
− 2

}

. (4.13)

This thesis studies line-of-sight channels with a known transmission delay. For

an ideal line-of-sight channel, the effective channel impulse response is the convolution

of the pulse shape and the matched filter with some delay, which is symmetric about

the impulse response maximum. In the particular line-of-sight channel used in this

thesis, the transmission delay is ten samples, or 17% of a symbol period, so a good

estimate for δopt is

δopt ≈
1

2

(

L +
M

O
− 2

)

(4.14)

Unless otherwise stated, this is the value of δ used in this thesis.

For the modified MSE receiver, the number of equalizer filter taps M is a func-

tion of the estimated channel length L̂ according to

M = OL̂ (4.15)

For the line-of-sight channel used in this thesis, the actual channel length L is used

as the estimated channel length parameter for the modified MSE receiver.
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4.3 Assumptions

The simulation described in this chapter makes several assumptions and simpli-

fications in the communications system model. These limitations are detailed below.

By using a baseband simulation, the effects of carrier waveform phase interfer-

ence between multipath reflections is not captured explicitly in the multipath model.

Instead, the potential phase interference effects of the carrier waveform are accounted

for by the baseband multipath channel coefficients in the simulation. These coeffi-

cients are allowed to be complex to model the impact of the reflection on the phase

of the carrier signal.

Doppler effects are not modeled in this baseband simulation. The frequency of

the notional carrier waveform is assumed to be equal for each multipath reflection at

the receiver input.

The receiver knows the time when the impulse response of the combined chan-

nel/pulse shape is at a maximum and synchronizes the primary channel to sample at

this point. This synchronization is critical for symbol spaced receivers. Conceivably, a

blind detector could estimate this sampling synchronization via energy detection and

averaging over many symbols. When the transmitter applies pseudorandom delays

to each symbol, the point within each symbol period for which the effective channel

impulse response is at a maximum in the receiver is no longer the same for each sym-

bol. In this case, the receiver synchronizes to the average time at which the impulse

response is at a maximum. Again, this synchronization is deterministic within the

simulation, so the receiver synchronization is assumed to be perfect and stable.

The modified MSE receiver requires knowledge of the additive channel noise

power. This simulation uses sample mean and variance of the noise signal to directly

determine the noise power. In reality, the noise signal is not available independent

from the information signal at the receiver input, so another noise estimation tech-

nique would be required. This could be as simple as measuring the power at the

receiver input when the transmitter is not present.
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Figure 4.8: Simulated bit error rates for DPSK in a LOS channel compared to the
analytical probability of bit error.

4.4 Simulation Verification

This section presents incremental simulation results to validate the simulation

components. To demonstrate the modulator and demodulator models, the bit error

rates produced via simulation under line-of-sight conditions are compared to theo-

retical DPSK performance. The effects of multipath models are demonstrated by

analyzing the impact on bit error rate and examining the received symbols in the

signal space. The equalizers are then inserted into the receiver model to demonstrate

their multipath mitigation capabilities.

4.4.1 DPSK Simulation Validation. Figure 4.8 compares the analytical

probability of bit error for DPSK constellations in the presence of AWGN to the

bit error rates observed in simulation using an ideal line-of-sight physical channel.

Over the Eb/No range considered here, the difference between analytical bit error

probability and the simulated result is not statistically significant. All error bars

on plots in this thesis represent 95% confidence intervals produced by Monte Carlo

simulation [10:266]. An ideal square pulse shape is used in the transmitter to prevent

ISI.
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Figure 4.9: Simulated bit error rates for binary DPSK in a LOS channel. The
truncated SRRC shape introduces ISI that degrades the receiver performance.

In practice, the SRRC pulse shape is more practical than an ideal square wave

because of bandwidth considerations. An infinite length SRRC pulse shape and

matched filter pair results in no ISI, like the square wave pulse shape. When the

SRRC pulse shape is (necessarily) truncated, typically to a total width of 10Tsym in

this simulation, the symbol-spaced samples at the matched filter output are subject

to ISI, degrading the bit error rate. Figure 4.9 demonstrates the effect of ISI due to

SRRC windowing. Note that for equal size pulse shape windows, the bit error rate

degradation is most severe for small β (wide SRRC shape). Figure 4.10 shows that

small β results in large sidelobes in the effective channel impulse response with zero

crossings that do not synchronize to the rate 1/P downsampling.

4.4.2 Multipath Interference Validation. A simple sparse physical channel

model shown in Figure 4.11(a) is used to demonstrate multipath modeling in the

simulation. The effect of the channel on the location of received symbols in the signal

space of a QPSK modulated waveform (at Eb/No = 9 dB measured at the matched

filter input) is given in Figure 4.11(b). An SRRC, β = 0.25 pulse shape and matched

filter are in use here. After differentially coherent demodulation, the observed BER is
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Figure 4.10: Effective channel impulse responses (pulse shape and matched filter).
The receiver synchronizes the first symbol spaced subchannel to the impulse response
maximum. (a) β = 0. (b) β = 0.25

0.24 vice the BER of 0.0088 observed in simulation for the line-of-sight channel at this

bit energy to noise ratio. Note that the imaginary component of the physical channel

impulse response produces a rotation of the constellation in the symbol space. The

BER degradation due to this multipath channel is summarized over a range of Eb/No

ratios in Figure 4.12. Over this range, the severe ISI caused by the multipath channel

dominates the accuracy of the demodulator bit estimation; the 8 dB gain in Eb/No

only improves the BER from 0.28 to 0.23.

4.4.3 Equalizer Validation. To demonstrate the ISI mitigation capability

of fractionally spaced CMA, fractionally spaced LMS, and subspace decomposition,

each equalizer is applied transmitter and channel described in the previous section.

Each equalizer uses N = 5, 000 transmitted symbols for training before the equalizer

output symbols are demodulated for BER calculations. After demodulating 5,000

symbols, the equalizers are reset and trained again, analogous to periodically adaptive

equalization. For fractionally spaced CMA and LMS, the step size µ is selected
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Figure 4.11: (a) Impulse response of a sparse multipath channel. (b) Received
samples in the signal space for QPSK modulation using an SRRC β = 0.25 pulse
shape at Eb/No = 9 db.
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Figure 4.13: Applying equalizer filters at the matched filter output improves BER
performance for the multipath channel. The 4-ary PSK communications system is
using an SRRC, β = 0.25 pulse shape and matched filtering.

experimentally to produce near-optimal convergence over the Eb/No range of interest

in the sparse channel environment with the 5,000 symbols transmitted for training.

The effective channel length L̂ and the number of equalizer filter taps M are also

determined empirically.

Figure 4.13 compares the bit accuracies achieved by CMA, LMS, and subspace

decomposition equalization algorithms to the BER observed without equalization.

CMA and LMS error rates behave similarly across the Eb/No range shown here. None

of the equalizer outputs approach the analytical probability of bit error achievable in

the absence of multipath interference. The subspace method shows only a slight

improvement over the unequalized case for this multipath channel.
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V. Simulation Results

This chapter presents numerical simulation results demonstrating the LPI charac-

teristics of the pseudorandom dither communications signal described in Chap-

ter III. The performance of both cooperative receivers and non-cooperative receivers

are quantified by the observed bit error rate after signal demodulation. Section 5.1

characterizes the behavior of the cooperative receivers (modified MSE and LMS bank).

The non-cooperative receiver simulation results are presented in Section 5.2. The co-

operative and non-cooperative receivers are compared in Section 5.3 in an attempt to

select a set of operating parameters that yields LPI characteristics with little penalty

to the cooperative receiver link. Finally, the bandwidth impact of the dither strategy

on DPSK modulation is considered in Section 5.4.

5.1 Cooperative Receiver Performance

Results for the modified MSE deconvolution and adaptive LMS equalizer bank

receiver structures are presented below. The performance of each cooperative re-

ceiver structure is demonstrated using the same set of analyses. First, the bit error

rates (BER) oberved for each cooperative receiver using traditional binary, 4-ary, and

8-ary DPSK signalling schemes are presented (using a line-of-sight (LOS), AWGN

channel). This result is compared to the analytical probability of bit error (Pb) for

each particular signalling scheme to identify any potential BER penalty associated

with the receiver structure for standard DPSK modulated signals. Note that standard

M-ary DPSK modulation is equivalent to using the PDW with the symbol dither set

to zero seconds for each symbol. Next, the BER behavior of each receiver is exam-

ined with respect to the pseudorandom dither waveform (PDW) dither range. BER

results for varying SRRC pulse shape roll-off factor (β) and symbol dither range are

contrasted with the goal of selecting a set of waveform parameters for each coop-

erative receiver structure that allows for accurate detection of the PDW signal and

significant detection degradation in non-cooperative receivers. This set of parameters

for the PDW is used to study BER behavior for a range of Eb/No.
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Figure 5.1: The modified MSE cooperative receiver accuracy is statistically similar
to the analytical probability of bit error.

5.1.1 Modified MSE Deconvolution. For a LOS channel, the observed BER

using the modified MSE deconvolution receiver structure matches the analytical bit

error probability predicted by (4.3), (4.5), and (4.6) for input Eb/No ratios shown

in Figure 5.1. The error bars on the observed BER data points in this plot and all

others in this chapter represent 95% confidence intervals produced by Monte Carlo

simulation [10:266]. In addition, the complexity of the modified MSE receiver is

significantly reduced when the symbol dither is restricted to zero because only a

single convolution matrix is required, and the inverse need only be calculated a single

time. Thus, equalization using the modified MSE receiver in a LOS, AWGN channel

is essentially equivalent to a simple matched-filter receiver without post-processing.

Figure 5.2 shows the modified MSE receiver error rate behavior for varying sym-

bol dither ranges. The results reflect a simulated LOS, AWGN channel and Eb/No = 9

dB at the receiver input. As the symbol dither range increases to a full symbol pe-

riod, the severity of the ISI increases, causing the observed BER to degrade. The

dither threshold at which the BER diverges from the zero dither level is dependent

on the pulse shape. Specifically, the more narrow the pulse shape (corresponding to

5-2



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−4

10
−3

10
−2

Dither range as a fraction of T
sym

P
b, B

E
R

 

 
β = 0
β = 0.25
β = 0.5
Analytical P

b

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
−3

10
−2

Dither range as a fraction of T
sym

P
b, B

E
R

 

 
β = 0
β = 0.25
β = 0.5
Analytical P

b

(b)

Figure 5.2: Modified MSE receiver performance as a function of the dither range
using a LOS channel at Eb/No = 9 db. (a) Binary DPSK modulation (b) 4-ary DPSK
modulation
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Figure 5.3: Applying the bank of LMS equalizers in a LOS environment increases
the BER with respect to the demodulation of the unequalized matched filter output
due to misadjustment.

larger β), the larger the dither that can be tolerated before demodulation accuracy

is degraded significantly. This directly follows from the lower ISI contribution due to

neighboring symbols for narrow pulse shapes.

5.1.2 Adaptive LMS Equalizer Bank. Unlike the modified MSE receiver,

the LMS bank of equalizers receiver structure produces a BER slightly worse than

the analytical probability of bit error for standard DPSK modulation schemes, as

seen in Figure 5.3. As discussed in Section 2.4.2, the step size µ and noise prevent

the LMS equalizers in the receiver from converging to an exact solution. This effect

can be mitigated by adaptively adjusting the LMS filter lengths via channel length

estimation and decreasing the step size as the filter converges, which are beyond the

scope of this thesis.

The correlation between symbol dither range and observed BER is shown in

Figure 5.4. The distinction between the SRRC β parameters is less pronounced

than for the modified MSE receiver because misadjustment dominates the minor ISI

variation due to SRRC β. As with the modified MSE receiver, ISI due to symbol
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Figure 5.4: LMS bank receiver performance as a function of the dither range using
a LOS channel at Eb/No = 9 db. (a) Binary DPSK modulation (b) 4-ary DPSK
modulation
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dither dominates the BER result as the dither range increases to an entire symbol

period.

5.2 Non-Cooperative Receiver Performance

This section characterizes the performance of the non-cooperative receivers de-

scribed in Section 3.3. The observed error rates of each receiver are analyzed in a

simulated LOS, AWGN channel.

5.2.1 Basic Receiver. The basic receiver does not perform any ISI mitiga-

tion, simply demodulating the samples of the matched filter output. This architecture

produces the observed BER in Figure 5.5. For both binary and 4-ary DPSK modula-

tion, the BER diverges from the the analytical Pb at a uniform dither range of 0.2Tsym.

The BER appears to be approaching an upper limit at as dither range increases. Also,

the impact of SRRC pulse shape truncation is more pronounced in this receiver struc-

ture than in either cooperative receiver, indicating that the two cooperative receivers

are mitigating this ISI source as well as the symbol dither ISI.

5.2.2 Blind Equalizer Receiver. The observed BER for the receiver em-

ploying FS-CMA equalization in a LOS environment, shown in Figure 5.6, is not

significantly improved relative to the basic receiver error rates in Figure 5.5. In fact,

for many parameter combinations, FS-CMA equalization increases the bit error rate

due to misadjustment in the FS-CMA steady-state. It should also be noted that the

particular sampling synchronization technique employed in this simulation minimizes

the benefit of fractionally spaced equalization techniques over the symbol spaced sam-

pling in the basic receiver. Interestingly, the ISI due to SRRC truncation, which is

most severe for small β, is not distinctive in the error rates for low dither ranges,

another symptom of misadjustment. The same phenomenon can be seen to a lesser

degree in the LMS equalizer bank result. In both cases, the β = 0 error curve is lower

than that of the basic receiver, indicating that some equalization of the ISI due to

pulse shape truncation is occurring when ISI due to symbol dither is minimal.
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Figure 5.5: Basic receiver performance as a function of the dither range using
a LOS channel at Eb/No = 9 db. (a) Binary DPSK modulation (b) 4-ary DPSK
modulation
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Figure 5.6: FS-CMA equalizer receiver performance as a function of the dither
range using a LOS channel at Eb/No = 9 db. (a) Binary DPSK modulation (b) 4-ary
DPSK modulation
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The error rates observed in simulation of the subspace equalization receiver

(Figure 5.7) indicate that subspace equalization is not suited for mitigation of ISI

due to symbol dither in a LOS channel. All of the BER curves are higher than their

equivalents in the basic receiver. Even when the dither is removed, the inversion of

the correlation matrix within the subspace channel identification algorithm is poorly

conditioned, producing the observations in Figure 5.7.

5.2.3 Symbol Dither Estimation Receiver. The symbol location estimation

algorithm described in Section 3.3.3 produces poor symbol identification estimates,

as seen in Figure 5.8. All bit error rates shown here fall between 7.9% and 29%.

Differentiation between SRRC β values is only apparent when the symbol dither is

allowed to vary over 0.5Tsym or greater. The improvement in BER for increasing

symbol dither is contrary to intuition and the behavior of all other receivers. This

anomaly is most likely an artifact of the symbol boundary definition within the receiver

simulation which biases the error in the estimated symbol locations produced by the

algorithm for small dither ranges. Clearly, a more rigorous estimation algorithm is

required to make this receiver structure viable.
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Figure 5.7: Subspace equalizer receiver performance as a function of the dither
range using a LOS channel at Eb/No = 9 db. (a) Binary DPSK modulation (b) 4-ary
DPSK modulation
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Figure 5.8: Dither estimation receiver performance as a function of the dither range
for binary DPSK modulation using a LOS channel at Eb/No = 9 db.

5.3 LPI Signal Parameter Selection

This section explores the potential suitability of applying the pseudorandom

dither strategy with DPSK modulation as an LPI signalling scheme. The goal is to

find a transmitter/cooperative receiver pair that 1) yields a BER near optimal DPSK

performance and 2) results in poor BER for the non-cooperative receivers. Several

promising parameter sets are selected using the cooperative and non-cooperative per-

formance curves presented earlier in this chapter. The relative observed BER among

the cooperative and non-cooperative receivers suggests that symbol dither can success-

fully be employed to impede exploitation of the signal information by non-cooperative

receivers while preserving the cooperative communication link.

To select a set of signal parameters, the performance curves are grouped by

modulation type and pulse shape in Figure 5.9 through Figure 5.14. In these figures,

cooperative receivers BER are denoted by solid lines while non-cooperative receiver

results are represented by dashed lines. The greatest bit error difference (in a loga-

rithmic sense) between a cooperative receiver and the most accurate non-cooperative

receiver occurs for the binary DPSK modulated signal using an SRRC pulse shape
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Figure 5.9: Receiver performance comparison for binary DPSK, SRRC β = 0 at
Eb/No = 9 db.

with β = 0.25 and a dither distribution range of 0.6Tsym. At this operating point,

found in Figure 5.10, the modified MSE cooperative receiver yields BER = 5.4 · 10−4

versus the best non-cooperative receiver at BER = 8.9 · 10−3. Bit errors occur 16.4

times as frequently in the non-cooperative receiver than in the cooperative receiver

at Eb/No = 9 dB.

The BER improvement between cooperative and non-cooperative receivers is not

as high for 4-ary DPSK modulation at Eb/No = 9 dB, largely because the analytical

4-ary DPSK BER at Eb/No = 9 dB is higher than the binary DPSK BER. Thus,

the observed BER for the different receivers is dominated by AWGN vice receiver

efficiency. For 4-ary DPSK modulation with SRRC pulse shape β = 0.25 and symbol

dither range of 0.6Tsym, the non-cooperative BER is only 7.4 times worse than the

modified MSE cooperative receiver BER, as seen in Figure 5.13.

Fixing the symbol dither range at 0.6Tsym and varying Eb/No for binary and

4-ary constellations produces the performance results shown in Figure 5.15 and Fig-

ure 5.16. Between the two constellations, the 4-ary scheme produces greater separa-

tion between cooperative and non-cooperative receiver performance. For example, to
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Figure 5.10: Receiver performance comparison for binary DPSK, SRRC β = 0.25
at Eb/No = 9 db.
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Figure 5.11: Receiver performance comparison for binary DPSK, SRRC β = 0.50
at Eb/No = 9 db.
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Figure 5.12: Receiver performance comparison for 4-ary DPSK, SRRC β = 0 at
Eb/No = 9 db.
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Figure 5.13: Receiver performance comparison for 4-ary DPSK, SRRC β = 0.25 at
Eb/No = 9 db.
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Figure 5.14: Receiver performance comparison for 4-ary DPSK, SRRC β = 0.50 at
Eb/No = 9 db.

operate at BER = 1.0 · 10−2 non-cooperative receivers require ≈ 3 dB more signal

power than cooperative receivers in the binary case, while the signal power difference

for BER = 1.0 · 10−2 is ≈ 6 dB for the 4-ary constellation. In both cases, the BER

gap between the cooperative and non-cooperative receivers increases as Eb/No grows.

In the 4-ary case, the rate of change of non-cooperative BER improvement at high

Eb/No is near zero, suggesting that the ISI due to symbol dither is dominating the

error rate and decreasing the noise power has little effect on BER. Because the basic

non-cooperative receiver is outperforming the blind equalization receivers, ISI due to

symbol dither does not appear to be mitigated in any of the non-cooperative receivers

posited in this thesis. The ISI due to symbol dither, then, sets a lower limit on the

non-cooperative receiver BER achievable for each constellation and dither range. This

limit can be estimated empirically via simulation by removing the AWGN component

in the channel model. This exercise produces a best-case BER = 5 · 10−5 for the non-

cooperative receivers in Figure 5.15 (not shown on this plot) and BER = 4.9 · 10−3

for the non-cooperative receivers in Figure 5.16. This lower limit characterizes the

minimum level of security for a particular set of PDW parameters.
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Figure 5.15: Receiver performance for binary DPSK, SRRC β = 0.25, and dither
range 0.6Tsym.
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Figure 5.16: Receiver performance for 4-ary DPSK, SRRC β = 0.25, and dither
range 0.6Tsym.
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Figure 5.17: Receiver performance for binary DPSK, SRRC β = 0.25, and dither
range 0.8Tsym.

To degrade the non-cooperative receiver BER lower limit, the symbol dither

range can be increased. Setting the symbol dither range to a higher fraction of the

symbol period also causes the non-cooperative receivers to approach the BER limit

at lower Eb/No. In Figure 5.17, non-cooperative receiver demodulation of the binary

DPSK signal approaches a lower limit of BER = 4.8 · 10−3 at about Eb/No = 17 dB

for a symbol dither range of 0.8Tsym. The Eb/No required to achieve BER = 1.0 ·10−2

is 9 dB greater for non-cooperative receivers than for cooperative receivers. In the

4-ary constellation, the non-cooperative receiver lower limit is BER = 2.4 · 10−2 and

is plotted in Figure 5.18.

5.4 Bandwidth Considerations

This section compares the power spectral densities (PSD) of simulated base-

band DPSK waveforms with and without symbol timing dither. For standard DPSK

modulation, (without symbol dither), the width of the PSD is dependent on the sym-

bol period and the pulse shape. Figure 5.19 shows the effect of β on the null-to-null
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Figure 5.18: Receiver performance for 4-ary DPSK, SRRC β = 0.25, and dither
range 0.8Tsym.

bandwidth using the SRRC pulse shape. As expected, a narrow SRRC pulse shape

in the time domain corresponds to a wide null-to-null bandwidth.

Because the symbol dither strategy does not modify the pulse shape of the

transmitted symbols, the spectrum of each symbol is no different between a traditional

DPSK waveform and the PDW. The time dither of the PDW induces a phase shift in

the symbols in the frequency domain, but the PSD should be consistent with standard

DPSK.

In fact, the PSD of the dither waveforms are indistinguishable from standard

DPSK signalling. In Figure 5.20, a binary PDW with a dither range of Tsym (blue

curve) produces a PSD similar to a standard DPSK waveform with dither range of

0 (green curve n Figure 5.19). The PSD invariance with respect to dither range was

observed for all SRRC pulse shapes and constellations used in this thesis.
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Figure 5.19: PSD for standard binary DPSK using SRRC pulse shapes.
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Figure 5.20: PSD for binary DPSK, SRRC pulse shape with β = 0.25. Injecting
dither into the waveform does not impact the average PSD.
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VI. Conclusions and Recommendations

6.1 Conclusions

This thesis demonstrates a communication system that leverages symbol timing

dither to hinder interception and exploitation by non-cooperative receivers. Two

cooperative receiver structures are shown to reliably recover the digital information

with only a slight bit error rate (BER) penalty relative to the optimum performance

for the DPSK modulated waveform. The timing dither in DPSK transmitted symbols

causes ISI which is not mitigated in the notional non-cooperative receivers simulated

in this thesis. The pulse shape of the DPSK waveform and the symbol dither range

determine the severity of ISI and set a lower bound on BER of the non-cooperative

receivers. For the signal parameters proposed in this thesis, non-cooperative receivers

required 2-8 dB more signal power than cooperative receivers to achieve a bit error rate

of 1.0%. For three of the four waveform parameter sets analyzed in Section 5.3, non-

cooperative receivers produced bit error rates in excess of 0.1%, even for arbitrarily

large values of Eb/No.

Both cooperative receivers use signal processing techniques to recover the signal

from evenly-spaced samples of a traditional matched filter receiver. The modified

MSE cooperative receiver, which requires full knowledge of and synchronization to

the symbol timing dither, yields marginally better bit estimation accuracy than the

LMS bank cooperative receiver. The MSE receiver’s BER benefit is computationally

expensive and requires a matrix inverse operation for each symbol (assuming the

symbol timing dither sequence does not repeat). The LMS bank receiver assumes the

symbol dither pattern repeats, and requires the period to be short enough that the

dither pattern repeats many times (5,000 times in simulations here) for the equalizers

to be trained. Thus, the low computational complexity of this approach comes at the

cost of significant equalizer training periods.

Of the non-cooperative receivers considered, the basic sample-spaced receiver

with best-case synchronization proved to consistently achieve better BER performance

than the more complex non-cooperative receiver strategies. In practice, however,
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non-cooperative symbol-level synchronization may not be easily achieved and the

oversampled non-cooperative receiver models may more accurately reflect expected

non-cooperative receiver performance.

6.2 Recommendations for Further Study

In completing this thesis, several avenues for further study have been uncovered.

These future research opportunities are concisely summarized below for easy reference.

1. Many variations of the dither waveform are possible. For example, the pseu-

dorandom dither applied to each symbol always followed a uniform probability

density function in this work. Any number of more exotic distributions could

be used. Also, simulation was restricted here to DPSK modulation. The dither

strategy proposed here should be applicable to most direct sequence modula-

tion schemes, including Quadrature Amplitude Modulation (QAM) and Pulse

Amplitude Modulation (PAM).

2. Simulation results were restricted to line-of-sight (LOS) channels. Further in-

vestigation could consider cooperative receiver performance in the presence of

multipath interference.

3. The cooperative receiver designs proposed here are restricted to uniform sam-

pling of the matched filter output, with the acknowledgement that some loss of

bit energy is expected. A more complex modified MSE architecture could use

complete knowledge of the dither sequence to sample the matched filter output

more intelligently.

4. Lastly, only a few notional non-cooperative receivers were used in this thesis.

Further work could consider many other non-cooperative receiver designs. In

particular, the symbol dither estimation algorithm could be improved. Also,

the impact of non-synchronous sampling on the non-cooperative receivers could

be characterized.
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